

KLIMASCHUTZBERICHT

für das Jahr 2013

VORWORT

Hitzewellen, orkanartige Winde, Jahrhunderthochwasser – die Auswirkungen des Klimawandels sind heute für uns alle spürbar und gelten als eine der größten Herausforderungen für unsere Gesellschaft. Die Suche nach einer geeigneten Strategie den Klimawandel und dessen Folgen aufzuhalten und sich den heutigen klimatischen Bedingungen anzupassen steht weltweit in der politischen Diskussion.

Der Wetteraukreis erkannte seine Rolle sowie deren Bedeutung und verabschiedete 15 Klimaschutzziele im Jahr 2009, welche maßgeblich für die weitere nachhaltige Entwicklung im Kreis sind. Erhebliche Energieeinsparungen, die Senkung der CO₂-Emissionen sowie der Ausbau und die Nutzung regenerativer

Landrat Joachim Arnold

Energien stehen während der Planung und Durchführung von Klimaschutzmaßnahmen im Fokus.

Mit der Erstellung des Klimaschutz – Teilkonzepts erhielt der Kreis durch Fördermittel vom Bundesumweltministerium die Möglichkeit eine zweite Fachkraft, für zunächst zwei Jahre befristet, im Klimaschutz zu beschäftigen. Seit dem 1. Mai 2014 arbeiten die Klimaschutzmanagerin (Vollzeit) und der Klimaschutzbeauftragter (0,5 Stelle) gemeinsam an der Umsetzung. Neben zahlreichen Energieeffizienzmaßnahmen im kreiseigenen Gebäudebestand, bilden die Sensibilisierung und die kontinuierliche Information der Nutzer ein wichtiges Handlungsfeld.

Erster Kreisbeigeordneter Helmut Betschel - Pflügel

Neben den Verbrauchswerten der einzelnen Liegenschaften und den aktuellen Klimaschutz-

maßnahmen im Kreis, sind im vorliegenden Klimaschutzbericht erstmalig Kennzahlen zur Nutzung regenerativer Energien im gesamten Kreisgebiet enthalten.

Ihr Landrat

Ihr Erster Kreisbeigeordneter

Helmut Betschel – Pflügel

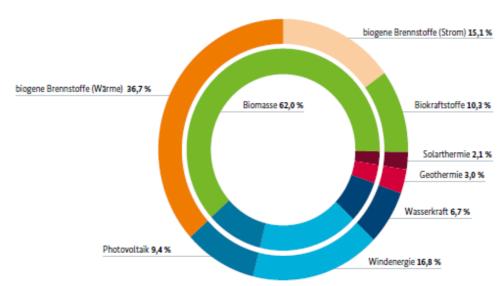
Joachim Arnold

Friedberg, 27.10. 2014

Inhaltsverzeichnis

VORV	VORT	3
Inhalt	sverzeichnis	5
1.	Erneuerbare Energien im Kreisgebiet	6
1.1	Erneuerbare Energien (EE) in Deutschland	6
1.2	Erneuerbare Energien im Kreisgebiet	7
1.2.1	Sonnenenergie	8
1.2.2	Windkraft	10
1.2.3	Wasserkraft	11
1.2.4	Biomasse	12
1.2.5	Wärmepumpen	13
1.3	Biogasanlagen im Wetteraukreis	15
1.4	Strommix: Vergleich Bundesgebiet und Ovag – Netzgebiet	17
2	Energiemanagement in der Verwaltung des Landkreises	19
2.1	Leistungen des Energiemanagements im Wetteraukreis	20
2.2	Entwicklung der Energieverbräuche in den kreiseigenen Liegenschaften	21
2.2.1	Zusammenfassung der Verbrauchswerte: Strom, Wärme und Wasser	22
2.2.2	Verbrauchsanalyse	24
2.3	Potentialanalyse	28
2.4	Kostenentwicklung: Strom, Wärme und Wasser	31
2.5	CO ₂ – Emissionen kreiseigener Liegenschaften	32
3	Klimaschutzmaßnahmen des Wetteraukreises	36
3.1	Klimaschutzmanagerin	36
3.2	Nutzerkonzept: Klimaexperten im Wetteraukreis	37
3.3	Photovoltaik-Projekte	38
3.4	Beleuchtungskonzepte	39
3.5	Austausch der Heizungsanlage	40
3.6	Projekt Biogasanlagen	41
3.7	Elektromobilität	42
3.8	Klimaschutz - Netzwerk	43
3.9	Internetseite zum Thema Klimaschutz	44
3.10	Optimierung des Energiemanagements	45
3.11	Energetische Sanierung - Wärmedämmmaßnahmen	46
Impre	ssum	49
Leger	nde	51
Anlag	e 1 (Verbrauchsübersicht Schulen)	54
Anlag	e 2 (Verbrauchsübersicht für die Verwaltung und Wohnheime)	61

Erneuerbare Energien im Kreisgebiet


1. Erneuerbare Energien im Kreisgebiet

Erneuerbare Energien, wie Wind- und Sonnenenergie, Biomasse, Geothermie und Wasserkraft, leisten einen erheblichen Beitrag zum Klimaschutz. Ebenso tragen sie zur Versorgungssicherheit und zur Vermeidung von Rohstoffkonflikten bei. Der Vorteil Erneuerbarer Energien besteht darin, dass natürlich stattfindende Prozesse und nachwachsende Rohstoffe für die Erzeugung von Strom, Wärme und Kraftstoffen genutzt werden können.

1.1 Erneuerbare Energien (EE) in Deutschland

Der Anteil Erneuerbarer Energien am gesamten Endenergieverbrauch in Deutschland lag 2013 bei 12,3 %. Im Vergleich zum Vorjahr bedeutet dies einen leichten Anstieg. Biomasse deckt den größten Teil der Strom- und Wärmeversorgung sowie den Einsatz als Kraftstoff bei den EE mit 62 % ab. Ein weiterer bedeutender Energieträger ist die Windkraft mit einem Anteil von 16,8 %. Diese kommt jedoch ausschließlich in der Stromerzeugung zum Einsatz. Die Nutzung von Sonnenenergie gewann in den vergangenen Jahren stark an Bedeutung und nimmt 2013 einen Anteil von 11,5 % ein, davon 2,1 % in der solarthermischen Anwendung und 9,4 % in der Stromerzeugung. Mit 6,7 % deckt die Wasserkraft den deutschen Endenergiebedarf ab und den geringsten Anteil nimmt die Geothermie mit 3,0 % ein.

Struktur der Endenergiebereitstellung aus EE in Deutschland 2013

Quelle: BMWi: Erneuerbare Energien im Jahr 2013

1.2 Erneuerbare Energien im Kreisgebiet

Im folgenden Abschnitt werden die einzelnen regenerativen Energiequellen mit den Vor- und Nachteilen in der Nutzung sowie die entsprechende Verteilung im Kreisgebiet und den wichtigsten Kennzahlen vorgestellt.

Beispiel für Erneuerbare Energien: Übersicht der Biogasanlagen im Wetteraukreis

Biogasanlagen

1.2.1 Sonnenenergie

Sonnenenergie

Funktionsprinzip - Solarthermie (Wärmeerzeugung)

Sonnenenergie absorbiert und erhitzt ein Wasser-Frostschutz-Gemisch. Die erzeugte Wärme wird über einen Wärmetauscher in den Solarspeicher weitergeleitet. Wieder abgekühlt, gelangt das Gemisch zurück zu den Kollektoren und der Vorgang wiederholt sich. Mit Hilfe des Pufferspeichers ist die Nutzung der Sonnenenergie für die Warmwasseraufbereitung über mehrere Tage trotz schlechten Witterungsbedingungen möglich.

Funktionsprinzip - Photovoltaik (Stromerzeugung)

Solarzellen, wandeln Sonnenenergie in elektrische Energie in Form von Gleichstrom um. Diese wird über Kabel dem restlichen Sytem zugeführt. Im Anschluss kann die Energie gespeichert werden oder über Wechselrichter in das öffentliche Stromnetz eingespeist werden.

Vorteile

- Reduzierung von CO₂-Emissionen
- gesicherte Energieguelle
- einfache Technik (Anlage kann in bestehende Haustechnik integriert werden)

kaum Wartungsbedarf (hohe Zuverlässigkeit,

- lange Lebensdauer, nahezu störungs- und wartungsfreier Betrieb)
- Lieferung der Grundwärme erhebliche Reduzierung des Heizbrennbetriebes (nur im Bedarfsfall zur Warmwassererzeugung benötigt)
- · lange Gewährleistungsdauer
- · unabhängig von steigenden Energiekosten
- geräuschlose Wärme- und Stromerzeugung
- · kein Schmutz
- · kaum Platzbedarf im Haus
- · Vergütung nach EEG (attraktive Renditen)

Nachteile

- hohe Investitionskosten
- Nutzung abhängig von Dacheigenschaften

keine konstante Energieversorgung (schlechte

Wetterlage - Zusatzheizung notwendig)

Mit 43,5 Millionen kWh können im Wetteraukreis theoretisch runde 20.000 2-Personen Haushalte versorgt werden

Solaranlagen im Wetteraukreis (Stand: 2014)

lfd. Nr.	Standort	Anzahl	installierte Leistung (kWp)	Einspeisung (kWh)	Anzahl der WK- Anlagen	Betreiber der WK-Anlagen
1	Altenstadt	150	1.763,41	1.155.913	4	OVAG Energie AG, Sonneninitiative
2	Bad Nauheim	112*	1.044,07	804.980	6	OVAG Energie AG, RIG- Solar, Main-Spessart-Solar, Sonneninitiative, MIEG
3	Bad Vilbel**				2	OVAG Energie AG
4	Büdingen	276	4.767,44	3.620.574	2	OVAG Energie AG
5	Butzbach	237	2.415,02	1.964.677	2	OVAG Energie AG
6	Echzell	131	1.930,60	1.542.806	0	
7	Florstadt	122	1.898,89	1.373.409	1	OVAG Energie AG
8	Friedberg	239	3.745,31	3.067.043	8	OVAG Energie AG, RIG- Solar, Sonneninitiative
9	Gedern	136	2.724,93	2.216.220	0	
10	Glauburg	63	866,05	685.965	0	
11	Hirzenhain	44	610,11	382.999	0	
12	Karben	254	4.564,08	3.421.968	2	OVAG Energie AG
13	Kefenrod	99	1.455,19	1.220.458	0	
14	Limeshain	77	1.136,90	821.989	0	
15	Münzenberg	148	1.810,55	1.508.783	1	OVAG Energie AG
16	Nidda	261	4.036,44	3.023.740	1	MIEG
17	Niddatal	155	1.988,89	1.577.423	2	OVAG Energie AG
18	Ober-Mörlen	86	1.038,79	780.422	1	OVAG Energie AG
19	Ortenberg	94	1.421,82	1.082.254	0	
20	Ranstadt	92	1.068,33	815.286	2	OVAG Energie AG
21	Reichelsheim	110	1.531,33	1.186.075	1	OVAG Energie AG
22	Rockenberg	100	837,61	691.167	0	
23	Rosbach	126	3.058,44	2.616.750	1	OVAG Energie AG
24	Wölfersheim	207	8.177,15	7.107.362	0	
25	Wöllstadt	81	1.070,79	884.940	3	OVAG Energie AG
	Gesamt	3288	54.962,13	43.553.203	39	

^{*} Weitere 138 Solaranlagen mit einer installierten Gesamtleistung von 2095,42 kWp befinden sich im Netzgebiet der Stadtwerke Bad Nauheim.

^{**}Angaben zum Netzgebiet der Stadtwerke Bad Vilbel stehen nicht zur Verfügung.

Mit 30,6 Millionen kWh können im Wetteraukreis theoretisch runde 14.000 2-Personen Haushalte versorgt werden

1.2.2 Windkraft

Windkraft

Funktionsprinzip - Windkraftanlage

Die Hauptbestandteile einer Windkraftanlage sind: Turm, Rotor mit Rotorenblättern und Narbe, Getriebe und Generator. Die kinetische Energie der Windströmung wirkt auf die Rotorenblätter und erzeugt eine Drehbewegung des Rotors. Aus der sogenannten Rotationsenergie wird der Generator gespeißt. Mechanische Energie wird in elektrische Energie umgewandelt, welche anschließend von Niedrigstromspannung in Hochspannungsstrom transformiert wird. Im Anschluss erfolgt die Netzeinspeisung.

	Vorteile	Nachteile
•	CO ₂ -neutrale Stromerzeugung	Unstetigkeit des Windes - keine konstante Stromerzeugung möglich
•	gesicherte Energiequelle	 Beinträchtigung des Landschaftsbildes
•	Schaffung von Arbeitsplätzen in Produktions- und Dienstleistungsbereichen	Behinderung von Vogelflugrouten (regionale Unterschiede)
•	regionale Wertschöpfung (regionale Bauunternehmen)	Geräuschpegel
•	hohes Erweiterungspotenzial (On- und Offshore - Anlagen)	Werteverlust von Immobilien

Windkraft - Anlagen im Wetteraukreis (Stand: 2014)

lfd. Nr.	Standort	Einspeise- punkte	installierte Leistung (kW)	Einspeisung (kWh)
1	Altenstadt	1	1.800,00	1.769.760
2	Friedberg	1	6.000,00	10.198.320
3	Gedern	2	3.000,00	3.910.040
4	Hirzenhain/Glashütten	1	3.000,00	2.707.520
5	Karben	1	1,60	5.549
6	Karben/Kloppenheim	2	6.000,00	9.399.760
7	Nidda/Fauerbach	1	2.400,00	1.963.800
8	Nidda/Ober Schmitten	1	1.200,00	642.760
Gesamt		10	23.401,60	30.597.509

Mit 15,8 Millionen kWh können im Wetteraukreis theoretisch runde 7.300 4-Personen Haushalte versorgt werden

1.2.3 Wasserkraft

Wasserkraft

Funktionsprinzip - Wasserkraftanlagen

Physikalisches Grundprinzip bei der Nutzung von Wasserkraft ist die Umwandlung der Bewegungsenergie (Strömung) sowie der potenziellen Energie, (d.h. die Höhendifferenz an Aufstauungen) in nutzbare Energie. Dazu werden Turbinen eingesetzt, deren Bauform dem jeweiligen Einsatzgebiet angepasst sind.

Prinzipiell wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Das Laufwasserkraftwerk nutzt die natürliche Strömung von Flüssen und Bächen. Um die potenziell nutzbare Energie zu erhöhen, findet meist auch eine Aufstauung durch ein Wehr statt.

Demgegenüber nutzen Speicherkraftwerke Wasser aus einem Stausee zur Stromerzeugung. Aufgrund der topografischen Bedingungen in Deutschland ist der Anteil der Speicherkraftwerke an der gesamten Wasserkraft hier jedoch relativ gering. Eine Sonderform der Speicherkraftwerke sind die sogenannten Pumpspeicherkraftwerke. Sie pumpen das Wasser in ein höher gelegenes Speicherbecken. Dort können sie diese potenzielle Energie im Bedarfsfall wieder abrufen. Pumpspeicherkraftwerke dienen somit als Speicher von elektrischer Energie.

Vorteile Nachteile dauerhafte Verfügbarkeit des Energieträgers Energiespeichermöglichkeiten lange Lebensdauer der Anlage, einfache und bewährte Technologie Mehrzwecknutzung (Stromerzeugung, Fischzucht, Trinkwasserversorgung, Erholung) Mefizier Machteile hohe Investitionskosten (sehr hoher baulicher Aufwand) Eingriff in Natur und Landschaft Eintritt von Veänderungen in der Wasserqualität (Strömungsverhältnisse, Zunahme von Nährstoffen) Gefährdung von Lebensräumen

Wasserkraft - Anlagen im Wetteraukreis (Stand: 2014)

lfd. Nr.	Standort	Anzahl	installierte Leistung (kW)	Einspeisung (kWh)
1	Büdingen	1	13,70	1.769.760
2	Butzbach	2	18,50	10.198.320
3	Ortenberg	4	582,40	3.910.040
Gesamt		7	614,60	15.878.120

1.2.4 Biomasse

Biomasse

Funktionsprinzip - Biogasanlage

Das Prinzip einer Biogasanlage beginnt mit der Lagerung und Aufbereitung des Substrats (Gülle, Energiepflanzen, organische Reststoffe). In einer Vorgrube wird das Material gelagert und durch verschiedene mechanische Vorgänge zerkleinert und aufbereitet. Anschließend wird das Substrat dem Fermenter zugeführt. Im Hauptbestandteil der Biogasanlage herrschen optimale Bedingungen für die Biogasproduktion: konst. Temperaturen, gasund wasserdicht, lichtundurchlässig, Wärmedämmung. Die Durchmischung der Substrate durch ein integriertes Rührwerk im Fermenter und die Zersetzung durch Mikroorganismen erfolgt, so dass 90% der Energie im Substrat zu Biogas umgewandelt werden. Vergorene Reststoffe dienen als Dünger in der Landwirtschaft.

Vorteile

- universell einsetzbar: stoffliche und energetische Nutzung
- vielfältige Anwendungsbereiche: Strom, Wärme, Kraftstoff
- Nutzung von regionalen Energieträgern unabhängig von Brennstoffimporten und keine langen Transportwege
- dauerhafte und regionale Verfügbarkeit wetterunabhängig
- Einnahmequelle für Land- und Forstwirtschaft (Schaffung von Arbeitsplätzen) - regionale Wertschöpfung
- Vgl. mit fossilen Energieträgern: bessere CO₂-Bilanz
- gute Speichermöglichkeiten Deckung von Grund- und Spitzenlast
- · dezentrale Energiewirtschaft
- · Verwertung von Restabfällen

Nachteile

- · hohe Investitionskosten
- geringere Energiedichte als fossile Energieträger (1 m³ Biogas ersetzt nur 0,5 - 0,7 m³ Erdgas)
- großer Flächenbedarf: Anbau von Energiepflanzen konkurriert mit der Nahrungsmittelproduktion
- begrenzte Anbauflächen und Erweiterungsmöglichkeiten
- Vgl. mit weiteren erneuerbaren Energieträgern: schlechtere CO₂-Bilanz aufgrund des
- Verbrennungsprozesses und der Freisetzung von CO₂
- Nutzung von Pellets / Holzhackschnitzel: Abhängigkeit vom Wassergehalt des Materials und ein erhöhter Platzbedarf

1.2.5 Wärmepumpen

Wärmepumpen

Funktionsprinzip - Wärmepumpen

Ein Kältemittel wird in einem geschlossenen Kreislauf über einen Wärmetauscher mit Wärme aus natürlichen Energiequellen in Verbindung gebracht. Als Arbeitsmedium, hat das Kältemittel die Aufgabe der Wärmeübertragung und des Transports. Bereits bei sehr geringen Temperaturen verdampft das Kältemittel unter Energiezufuhr. In einem Kompressor kommt es zur Verdichtung und das Gas erhitzt sich dabei stark. Über einen zweiten Wärmetauscher wird die Wärme dem Heizungskreislauf zu geführt - das Kältemittel kühlt ab, kondensiert und der Kreislauf kann von neuem beginnen. Wärmepumpen können mit verschiedenen erneuerbaren Energiequellen gespeißt werden:

- Wasser Wasser Wärmepumpe
- Sole Wasser Wärmepumpe
- Luft Wasser Wärmepumpe
- Luft Wärmepumpe

Vorteile

- Reduzierung von CO₂-Emissionen
- · geringe Betriebskosten
- kein Vorratsraum f
 ür Brennstoffe notwendig
- kein Schornstein nötig und die jährliche
 Kontrolle durch den Schornsteinfeger entfällt
- · wenig Platzbedarf
- · nahezu wartungsfrei
- im Sommer kann die Anlage zur Kühlung verwendet werden
- nachträgliches Einbauen in Bestandsgebäude möglich
- · gefahrlos (keine Explosionsgefahr)
- · keine Zusatzheizung notwendig

Nachteile

- · hohe Investitionskosten
- · kostenintensive Tiefenbohrung
- Überprüfung der Bodenbeschaffenheit und der
- Höhe und Qualität des Grundwasser (mit Ausnahme von Luft - Wasser - Wärmepumpen)
- Anlagenbetrieb durch Strom
- · gute Wärmedämmung nötig

Wärmepumpen im Wetteraukreis (Stand: 2014)

lfd. Nr.	Standort	Anzahl	Wirkarbeit (kwh)
1	Altenstadt	99	572.516
2	Bad Nauheim	31	248.802
3	Büdingen	110	879.615
4	Butzbach	118	739.247
5	Echzell	37	283.051
6	Florstadt	41	226.621
7	Friedberg	78	531.232
8	Gedern	34	248.406
9	Glauburg	45	255.701
10	Hirzenhain	13	86.468
11	Karben	86	687.861
12	Kefenrod	19	147.356
13	Limeshain	49	275.504
14	Münzenberg	68	499.326
15	Nidda	135	1.063.188
16	Niddatal	62	476.170
17	Ober-Mörlen	62	366.943
18	Ortenberg	46	360.787
19	Ranstadt	70	411.792
20	Reichelsheim	64	345.972
21	Rockenberg	83	527.348
22	Rosbach	100	578.433
23	Wölfersheim	89	452.167
24	Wöllstadt	49	372.314
Gesamt		1588	10.636.820

1.3 Biogasanlagen im Wetteraukreis

Im Frühjahr 2014 existierten im Kreisgebiet 14 Biogasanlagen. Die Standorte und die elektrische sowie thermische Leistung sind der nachstehenden Tabelle zu entnehmen. Die Anlage in Münzenberg ist aktuell nicht in Betrieb.

Informationen zu der genauen Substratzusammensetzung in den einzelnen Anlagen liegen derzeitig nicht vor. Im Allgemeinen werden jedoch zwei Einsatzstoffe verwendet:

a.) Landwirtschaftliche Erzeugnisse und Wirtschaftsdünger:

Schweine- und Rindergülle, Mais- und Grassilage, Zwischenfrüchte, Zuckerrüben, Putenmist, Getreide, Ganzpflanzensilage, Pferde- und Rindermist

b.) Bioabfälle:

Fettabscheider, überlagerte Lebensmittel, überlagertes Obst und Gemüse, vertrocknete Backwaren, Biohausmüll, Grünschnitt

Mit ca. 73 Millionen kWh* können im Wetteraukreis theoretisch runde 33.200 2-Personen Haushalte versorgt werden

Übersicht: Biogasanlagen im Wetteraukreis 2013/2014

lfd. Nr	Standort der Biogasanlage	elektr. Leistung	therm. Leistung	Besonderheiten
1	Altenstadt	22,4 Mio. kwh/Jahr	50 Mio. kwh/Jahr	Netzeinspeisung
2	Groß-Karben	800 kw	868 kw	
3	Kirch-Göns	250 kw	250 kw	
4	Wohnbach	15 Mio. kwh/Jahr	50 Mio. kwh/Jahr	Netzeinspeisung
5	Wenings	370 kw	450 kw	
6	Ober-Seemen	190 kw	455 kw	
7	Ossenheim	734 kw	850 kw	
8	Nieder-Seemen	800 kw	800 kw	
9	Münzenberg	0 kw	0 kw	derzeit nicht in Betrieb
10	Ilbenstadt	625 kw	300 kw	
11	Nieder-Weisel	370 kw	450 kw	
12	Ober-Seemen	190 kw	205 kw	
13	Rinderbügen	250 kw	180 kw	
14	Gedern	185 kw	230 kw	

^{*} Die Gesamterzeugung an Strom wurde hochgerechnet, da die Einspeisedaten nicht vorliegen. Grundlage ist die angegebene Leistung multipliziert mit einer durchschnittliche BHKW - Laufzeit von ca. 7.500 Std. (laut Studie des Landes NRW)

In den nächsten drei Jahren wird mit der Installation und Inbetriebnahme von ein bis zwei weiteren Biogasanlagen im Kreisgebiet gerechnet. Die Substratzusammensetzung und die zu erwartende elektrische und thermische Leistung ist aktuell nur für zwei Anlagen bekannt.

Mit dem Ausbau der Biogasanlagen und der überwiegenden Nutzung von Energiemais als Substratgrundlage kann davon ausgegangen werden, dass der Maisanbau im Umkreis der Biogasanlagen etwas zunimmt. Auswirkungen auf die Biodiversität und andere Ressourcen sind nicht zu erwarten.

Die Flächenanteile der Energiepflanzen an den aktuellen ackerbaulichen Nutzflächen im Wetteraukreis sind im folgenden aufgeführt: Summe – Ackerland: 40.238 ha
Zuckerrüben: 2.406 ha (5,9%)
Silomais: 2.921 ha (7,2%)
Körnermais/CCM: 1.259 ha (3,1%)
Raps: 5.901 ha (14,7%)
Getreide: 24.651 ha (61,3%)
Sonstige: 3.100 ha (7,8%)

Die Angabe für die Anbaufläche des Silomais beinhaltet sowohl den Futtersilomais für das Rindvieh als auch den Energiesilomais für die Biogasanlagen. Mit 10.3 % ist der Anteil der Maisanbaufläche vergleichbar mit anderen ländlich geprägten Kreisen. Im Flächenanteil für den Rapsanbau sind die Mengen zur Speiseölgewinnung, zur Bereitstellung von Futtermitteln sowie zur Verwendung im chem. – techn. Bereich zusammengefasst. Die Größe der Anbaufläche im Wetteraukreis ist seit Jahren stabil. Auch für die kommenden Jahre werden sich die Zahlen auf einem ähnlichen Niveau halten.

Übersicht: In Planung befindliche Biogasanlagen 2013/2014

lfd. Nr	In Planung befindliche Biogasanlagen	elektr. Leistung	therm. Leistung	vorgesehenes Substrat	
	N: 1 5	00 Mi. J	h (I) L	45.000 t Zuckerrüben, 15.000 t Maissilage u. Ganzpflanzensilage, 6.000 t	
1	Nieder Florstadt	60 Mio i	kwh/Jahr	Hühnertrockenkot	
2	Trais-Münzenberg	keine Angaben			
3	Assenheim	keine Angaben			
4	Burgbracht	keine Angaben			
5	Wallernhausen	keine Angaben			
6	Kaichen	keine Angaben			
7	Nieder-Seemen	75 kw	80 kw	6000 cbm Rindergülle, 450 t Festmist, 350 t Futterreste, kein extra Maisanbau	

1.4 Strommix: Vergleich Bundesgebiet und Ovag – Netzgebiet

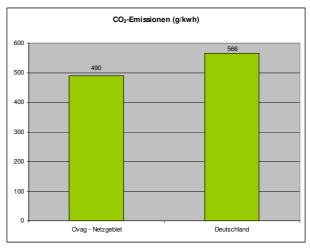
Im Folgenden wird ein Vergleich zwischen dem bundesweiten Strommix und den Kennzahlen des Ovag – Netzgebietes angestellt.

In Deutschland wird noch immer der größte Teil der elektrischen Energie aus Kohle gewonnen. 45,6 % des in Deutschland erzeugten Stroms kamen 2012 aus Kohlekraftwerken: 19,7 % wurden aus Steinkohle und 25,8 % aus Braunkohle gewonnen. Zudem nimmt die Kernenergie mit 17,1 % einen erheblichen Anteil bei der Stromerzeugung ein. Erdgas und andere fossile Energieträger decken mit 13 % den bundesweiten Strombedarf.

Der Trend in der Stromerzeugung in Richtung erneuerbarer Energien unterliegt seit Jahren einer positiven Entwicklung und stieg auch 2012 erheblich an. Mit 24,3 % (2011: 22,8 %) wird rund ein Viertel des Stroms aus Biomasse, Windenergie, Wasserkraft und Sonnenenergie produziert.

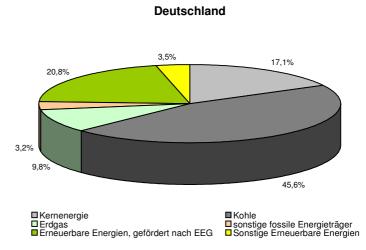
Auf Bundesebene entspricht der Strommix einer durchschnittlichen CO₂-Emission von 566 g/kwh.

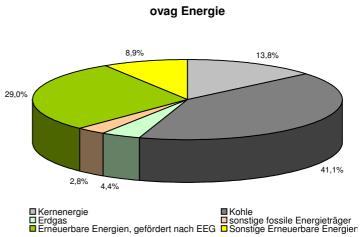
Im Vergleich zum bundesweiten Strommix ist der Anteil fossiler Energieträger im Netzgebiet des regionalen Energieversorgers (OVAG - Netzgebiete: Wetteraukreis, Vogelbergkreis und Landkreis Gießen) wesentlich geringer:


Auch in der Region wird immer noch der größte Anteil in der Stromerzeugung mit 41,1 % aus Kohle gewonnen.

Ebenso die Kernenergie mit 13,8 % nimmt einen signifikanten Teil ein. Allerdings konnte dieser Anteil gegenüber Bundesebene in den letzten Jahren stärker reduziert werden.

Erdgas gilt aufgrund geringerer Umweltbelastungen durch CO₂ als kostengünstigere Alternative zu anderen fossilen Energieträgern. 9,8 % des regionalen Strombedarfs konnten 2012 durch Erdgas gedeckt werden. Die Nutzung von Erdgas ist dementsprechend wesentlich weiter fortgeschritten als im Bundesdurchschnitt (Vgl. Abbildung S. 18).


Bei der Betrachtung der erneuerbaren Energien wird deutlich, dass in der Region eine nachhaltige und klimafreundliche Entwicklung vorangetrieben wird. Aufgrund eines sehr hohen Anteils an regenerativen Energien in der Stromerzeugung (37,9 %) ergibt sich für das Netzgebiet der OVAG eine CO₂-Emission von 490 g/kwh.



Übersicht: Energieträgermix – Deutschland und Ovag – Netzgebiet 2012

Energieträgermix	Deutschland			
Energieträgermix	Erzeugungsanteil			
Kernenergie	17,1%			
Kohle	45,6%			
Erdgas	9,8%			
sonstige fossile Energieträger	3,2%			
Erneuerbare Energien, gefördert nach dem EEG	20,8%			
Sonstige Erneuerbare Energien	3,5%			
Gesamt	100,0%			
Umweltauswirkungen des Energieträgermix Deutschland				
CO ₂ -Emissionen g/kWh	566			
radioaktiver Abfall g/kWh	0.0005			

Energieträgermix o	ovag Energie			
Energieträgermix	Erzeugungsanteil			
Kernenergie	13,8%			
Kohle	41,1%			
Erdgas	4,4%			
sonstige fossile Energieträger	2,8%			
Erneuerbare Energien, gefördert nach dem EEG	29,0%			
Sonstige Erneuerbare Energien	8,9%			
Gesamt	100,0%			
Umweltauswirkungen des Energieträgermix ovag Energie				
CO ₂ -Emissionen g/kWh	490			
radioaktiver Abfall g/kWh	0,0004			

Energiemanagement

2 Energiemanagement in der Verwaltung des Landkreises

Das kreiseigene Energiemanagement ist ein wichtiger Bestandteil für die im Fachbereich 5 zu erledigenden Aufgaben. Es stellt ein nicht mehr wegzudenkendes Bindeglied zwischen dem Bereich Hochbau, technische Bauunterhaltung, dem Betriebspersonal und den Nutzern dar.

Das Energiemanagement leistet einen wesentlichen Beitrag zur Verringerung der Energiekosten, des Energieverbrauchs und der CO₂ – Emissionen des Kreises.

Für ein zeitgemäßes kommunales Energiemanagement sind systematische energetische Schwachstellenanalysen der Gebäudehüllen und der Anlagentechnik unverzichtbar. Dazu gehört auch die Überprüfung des Betriebes vor Ort.

Aufgrund von technischen Innovationen wird zur Zeit der generelle Einsatz von LED – Beleuchtungen in Gebäuden geprüft - Einzelprojekte dazu sind bereits beauftragt.

Passivhausgebäude bei Neubauten sowie regenerative Anlagen wie Pellets- oder auch Holzhackschnitzelanlagen sind mittlerweile Standard und werden bei jeder Maßnahme auf Wirtschaftlichkeit geprüft.

Ein Bestandteil des Energiemanagements ist mit dem Beschluss des Klimaschutz – Teilkonzept für die kreiseigenen Liegenschaften wie Verwaltungs-, Schulgebäude und Wohnheime der Klimaschutz geworden.

Eine wesentliche Arbeit im Bereich Klimaschutz ist die Nutzer der kreiseigenen Liegenschaften zu sensibilisieren und diese für das Energiesparen zu gewinnen.

In den letzten Jahren wurde der Aufgabenbereich kontinuierlich ausgebaut und erweitert. Nachstehende Übersicht mit den Leistungen des Energiemanagement ist nach Themengebieten sortiert dargestellt:

Leistungen des Energiemanagements

2.1 Leistungen des Energiemanagements im Wetteraukreis

Energiecontrolling

- Verbrauchsdatenerfassung
- Auswertung der Verbräuche
- Internes Benchmarking
- Erstellung Energieausweise
- Wirtschaftlichkeitsbetrachtungen

€

Energiebeschaffung

- Regelmäßige Ausschreibungen
- Einkauf der Energiemedien
- Abschluss von Rahmenverträgen
- Einkauf Strom/Gas an der Börse

Energieeinsparprogramme

- Beratung der Nutzer
- Schulungen Betriebspersonal
- Programme zum energiesparenden Nutzverhalten
- Investive Sonderprogramme

Betriebsoptimierung (im Aufbau)

- Energetische Schwachstellenanalyse
- Optimierung der Anschlusswerte
- Optimierung technischer Anlagen
- Betriebsüberwachung
- Zentrale Gebäudeleittechnik

Klimaschutz

- Entwicklung von Energie-, Betriebsstandards sowie Nachhaltigkeitsaspekten
- Erarbeiten von Klimaschutzmaßnahmen
- Prüfung des Einsatzes von erneuerbare Energien

Kommunikation

- Dokumentation
- Publikationen
- Vorträge und Schulungen

Entwicklung der Energieverbräuche

2.2 Entwicklung der Energieverbräuche in den kreiseigenen Liegenschaften

In den folgenden Betrachtungen wird der gesamte Energieverbrauch der kreiseigener Liegenschaften (Schulen, Verwaltung, Wohnheime) dargestellt.

Tendenziell war das Jahr 2013 (Gradtage* 2013: 3595) kälter als das Jahr 2012 (Gradtage* 2012: 3404), so dass als Konsequenz in 2013 mehr Energie verbraucht wurde als im Jahr 2012.

Betrachtet man die Kosten (Haushaltzahlen 2013 / 2012), stiegen diese vor allem durch den vermehrten Wasserverbrauch und die neu hinzu gekommene Versiegelungsgebühr aus den Kommunen.

Die Stromkosten konnten durch die Umstellung von Rahmenverträgen auf eine Dienstleistungsvereinbarung zum Kauf von Energien an der Börse gesenkt werden und fing die deutliche Umlageerhöhung wie z.B. die des EEG nahezu ab.

Auch durch die Umstrukturierung des Gaseinkaufes (Börsenhandel), die Ende 2014 abgeschlossen sein wird, brachten in 2013 deutliche Kostenvorteile, die sich im Ergebnis niederschlugen. Ein Anstieg des Energieverbrauchs von 4 %, standen im Jahr 2013 nur eine 3 % -ige Kostensteigerung trotz Einführung neuer Zuschläge und Erhöhung alter Umlagen entgegen.

* **Erläuterung:** Gradtagzahl (GTZ, G_t) und Heizgradtag (HGT, G) werden zur Berechnung des Heizwärmebedarfs eines Gebäudes während der Heizperiode herangezogen. Sie stellen den Zusammenhang zwischen Raumtemperatur und der Außenlufttemperatur für die Heiztage eines Bemessungszeitraums dar und sind somit ein Hilfsmittel zur Bestimmung der Heizkosten und des Heizstoffbedarfs. Sie werden aber auch auf eine Heizperiode oder einen Kalendermonat bezogen und sind dann für die saisonalen Schwankungen aussagekräftig. Es gibt jeweils einen Wert für das langjährige klimatische Mittel, und einen Wert für das aktuelle Wetter (meteorologische Messung). Gradtagzahlen und Heizgradtage werden mit der Einheit Kelvin (K, bzw. °C) angegeben, haben also dieselbe Dimension wie die Temperatur (oder als Wärmesumme in Kd bzw. °Cd, Gradtagen).

2.2.1 Zusammenfassung der Verbrauchswerte: Strom, Wärme und Wasser

Witterungsbereinigt setzt sich der Trend bei Wärme nach unten fort. Im vergangenen Jahr konnten der Gesamtverbrauch an Wärme in Bezug auf das Jahr 1990 um ca. 34 % und zum Vorjahr um ca. 4 % reduziert werden.

Der Stromverbrauch ist zum Vorjahr nahezu gleich geblieben.

Der Wasserverbrauch stieg vor allem durch die Zunahme der Anzahl von Flüchtlingen um 2 %. Ohne die Wohnheime kann der Wetteraukreis einen Rückgang von 8 % zum Vorjahr verzeichnen.

Übersicht: Verbrauchswerte 1990 - 2013

Lfd. Nr.	Energieart / Fläche	Verbrauch / Fläche 1990	Verbrauch / Fläche 2012	Verbrauch / Fläche 2013	Tendenz zu 1990
1	Wärme (witterungsbereinigt Bezug 1990)	64.565 MWh	44.109 MWh	42.484 MWh	-34,20%
2	Strom	7.400 MWh	9.700 MWh	9.700 MWh	31,08%
3	Wasser	n. B.	71.708 m³	73.170 m³	n. B.
4	Quadratmeter	325.514 m ²	399.822 m²	400.102 m ²	22,91%

Auch in diesem Jahr hat sich der Trend von der vermehrten Nutzung regenerativer Energien fortgesetzt. Holzenergie und Wärme aus Biogasenergie hatten in 2013 einen Anteil von knapp 30 %. Dagegen sank der Anteil an Öl auf nun 21,88 % des Gesamtverbrauchs.

Wärme aus Strom spielt in dem Energiekonzept des Kreises, keine Rolle mehr. Ausnahmen bilden die fliegenden Bauten (Klassenraumcontainer), die keine andere wirtschaftliche Beheizung zu lassen, da diese nur temporär vor Ort betrieben werden.

Durch verschiedene energierelevante Einsparmaßnahmen – diese werden in folgenden Kapiteln erläutert – versucht der Wetteraukreis den Energieverbrauch stetig zu senken. Besonders bei den nicht witterungsbereinigten Wärmeverbräuchen kann es teilweise zu Schwankungen kommen.

Gründe für einzelne Schwankungen können sein:

- unterschiedliche Nutzungsgewohnheiten in den einzelnen Jahren (z. B. Einführung von Ganztagsschule)
- durch verschiedene Witterungseinflüsse (Verbräuche sind nicht witterungsbereinigt dargestellt) können saisonale Schwankungen entstehen
- Verbrauchsschätzungen durch einzelne Versorger
- Bauaktivitäten am jeweiligen Standort
- energetisch sanierte Schulen

Übersicht: Verbrauchswerte aufgeschlüsselt nach Energiemedium (nicht witterungsbereinigt)

Lfd. Nr.	Energieart	Verbrauch 1990	Verbrauch 2012	Verbrauch 2013	Tendenz zu 1990
1	Energie aus Öl	26.637 MWh	10.156 MWh	9.527 MWh	-64,23%
2	Energie aus Gas	36.129 MWh	21.407 MWh	21.376 MWh	-40,83%
3	Energie aus Holz	- MWh	10.942 MWh	12.057 MWh	+ 100 %
4	Energie aus Biogas	- MWh	0,361 MWh	628 MWh	+ 100 %
5	Energie aus Strom	1.799 MWh	- MWh	- MWh	- 100 %
	Summe Wärme	64.565 MWh	42.505 MWh	43.588 MWh	-32,49%

2.2.2 Verbrauchsanalyse

In der nachfolgenden Verbrauchsanalyse soll auf die Gebäudenutzungsarten (verschiedene Schultypen, Verwaltungsgebäude, Wohnheime) eingegangen werden.

Durch die Vielzahl von Gebäudesanierungen kann ein realistischer IST - Verbrauch von Energie in einigen Liegenschaften / Einzelgebäuden im Vergleich zum Vorjahreswert nicht angegeben werden. Kommen zum Beispiel Räume hinzu, erhöht sich auch der Energiebedarf. Durch energetische Sanierungen kann sich der Verbrauch andererseits reduzieren.

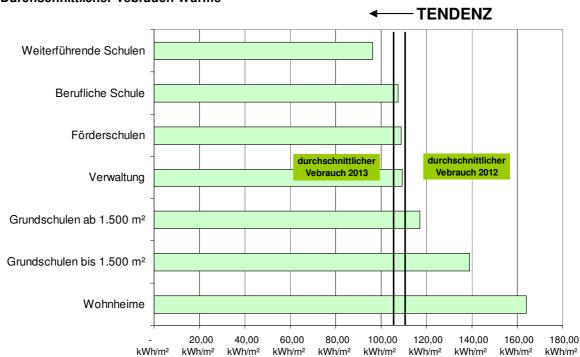
Um eine Aussage über die Verbräuche nach einzelnen Gebäudenutzungsarten treffen zu können (das Nutzerverhalten unterscheidet sich je nach Gebäudenutzungsart) und eine Vergleichbarkeit der Gebäude untereinander zu ermöglichen, werden bei den folgenden Betrachtungen die jeweiligen Nutzungsarten differenziert betrachtet.

Alle nachfolgenden Wärmeverbräuche sind witterungsbereinigt (Bezugsjahr 1990) dargestellt!

Einer Reduzierung des Energieverbrauches, besonders in den Schulen, stehen folgende Faktoren entgegen und müssen bei allen Einsparbemühungen mit berücksichtigt werden:

Übersicht: Einflussfaktoren

Lfd. Nr.	Faktor	Betroffens Medium
1	Stetige Flächenzunahme in Schulen, trotz Standortaufgaben und Teilabrisse (1990: ca. 300.780 m², 2012: 373.584 m²) Zunahme: 24,20 $\%$	Strom, Wärme
2	Zunahme Mensen mit Küchen / Betreuungs-küchen in den Schulen (1990: 0, 2005:7 Men-sen/Betreuungsküchen; 2012: 64 Mensen / Betreuungsküche; Zunahme: 914 %	Strom, Wasser
3	Ganztagsschulen (1990: 0, 2005: 14, 2013: 52) Zunahme: 371 %	Strom, Wärme, Wasser
4	Ausbau der IT Landschaft in den Schulen (Entwicklung: 1999: ca. 1.250 Stück PC, 2012: ca. 5.000 Stück PC); Zunahme: 400 %	Strom
5	Ausbau der IT Landschaft in der Verwaltung (Entwicklung: 1993: ca. 167 Stück PC, 2012: ca. 750 Stück PC); Zunahme: 450 %	Strom

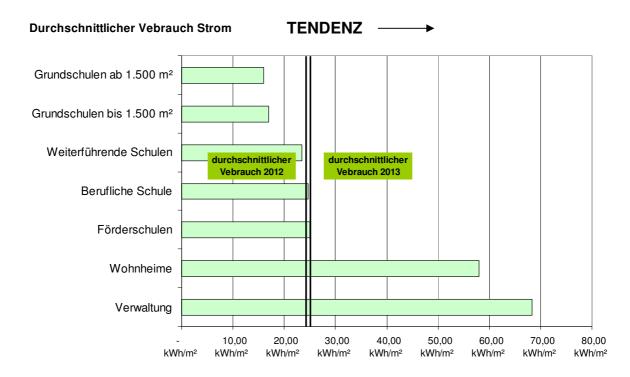

Wärme

Der durchschnittliche Verbrauch ist im Jahr 2013 auf ca. 106 kWh / m² gesunken. Im Jahr 2012 betrug dieser ca. 110 kWh / m².

Unter dem Durchschnitt lagen die "Weiterführenden Schulen" (ca. 96 kWh / m²) mit dem höchsten absoluten Verbrauch, der bei 19.235 MWh (ca. 45 % des Gesamtverbrauchs) lag.

Da die Wohnheime in ganztägiger Belegung stehen, haben diese mit ca. 164 kWh / m² den höchsten durchschnittlichen Verbrauch, verbrauchten aber mit ca. 741 MWh am Wenigsten absolut (ca. 2 % des Gesamtverbrauchs).

Durchschnittlicher Vebrauch Wärme

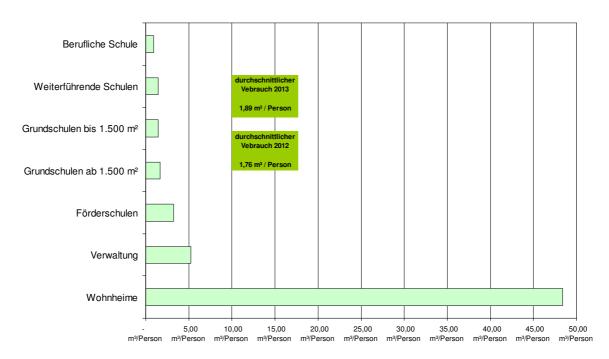


Strom

Der durchschnittliche Verbrauch ist im Jahr 2013 auf ca. 24,31 kWh / m² leicht angestiegen. Im Jahr 2012 betrug dieser ca. 24,26 kWh / m².

Unter dem Durchschnitt lagen zum Beispiel die Grundschulen ab 1.500 m² RGF (Reinigungsfläche). Diese hatten im Jahr 2013 einen durchschnittlichen Verbrauch von ca. 15,99 kWh/m², bei einem absoluten Verbrauch von ca. 1.500 MWh (ca. 15 % des Gesamtverbrauchs).

Die Verwaltung liegt mit einem durchschnittlichen Verbrauch von ca. 68,28 kWh / m² und einem absoluten Verbrauch von ca. 1.400 MWh (ca. 14 % des Gesamtverbrauchs) am unteren Ende.


Wasser

Der durchschnittliche Verbrauch ist im Jahr 2013 auf ca. 1,89 m³ / Person angestiegen. Im Jahr 2012 betrug dieser ca. 1,76 m³ / Person.

Der Gesamtanstieg hängt vor allem mit den Flüchtlingswohnheimen zusammen, die mit einem Verbrauchsanteil über 21 %, ca. 15.500 m³ im Jahr 2013 einen großen Anteil an der Verbrauchssteigerung hatten (Gesamtverbrauch: 73.170 m³). In 2012 lag der Anteil des absoluten Verbrauchs mit 9.166 m³ bei ca. 12 % des Gesamtverbrauchs (71.708 m³).

Ohne die Wohnheime kann der Kreis einen Rückgang von ca. 8 %, von 62.542 m³ auf 57.670 m³, trotz des weiteren Ausbaus von Ganztagsschulen, verzeichnen (Ganztagsschulen 2012 / 2013: 46; 2013 / 2014: 52)

Durchschnittlicher Vebrauch Wasser

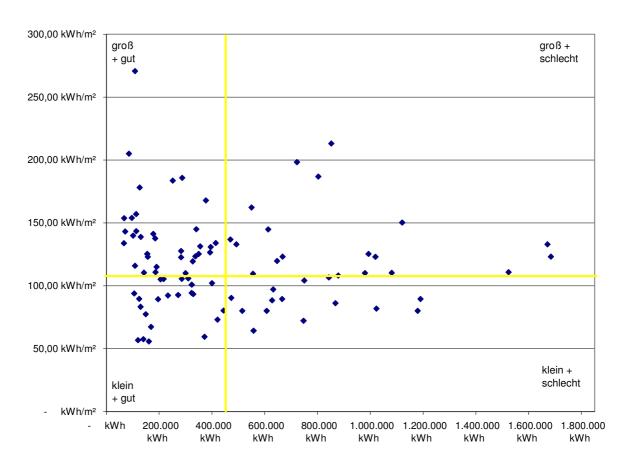
Potentialanalyse

2.3 Potentialanalyse

Eine Potentialanalyse im Bereich Energie wird zur Identifizierung von Liegenschaften (nur Schulen) mit hohem Energieverbrauch für die Bauunterhaltung herangezogen. Dabei werden die identifizierten Liegenschaften untersucht und Sanierungspläne erstellt.

Nachfolgende Grafiken identifizieren die Schulliegenschaften, die einen hohen Verbrauch pro Quadratmeter an Wärme und Strom in Verbindung mit einem hohen Gesamtverbrauch haben. "Gute" und "schlechte" Liegenschaften orientieren sich am Gesamtdurchschnitt aller Verbräuche in allen kreiseigenen Liegenschaften (siehe Folgeseite, Markierungen im Diagramm).

Die horizontale Linie weißt den Mittelwert aller Gesamtverbräuche 2013 in allen Liegenschaften aus. Oberhalb der Linie fallen überdurchschnittlich Verbräuche an. Die vertikale Linie beschreibt den durchschnittlichen Verbrauch pro Quadratmeter in allen Liegenschaften. Rechts von der Linie befinden sich Liegenschaften. die einen hohen Verbrauch Quadratmeter pro aufweisen.


Die in den folgenden Tabellen beschriebenen "kleinen / guten" oder "großen / guten" Liegenschaften haben im Durchschnitt einen geringeren Gesamtverbrauch und einen geringeren Verbrauch pro Quadratmeter. Diese weisen ein geringeres Potential Energie einzusparen auf und werden in dieser Analyse weiter nicht betrachtet. "Gut" heißt in diesem Fall also weniger Verbrauch pro Quadratmeter als der Durchschnitt.

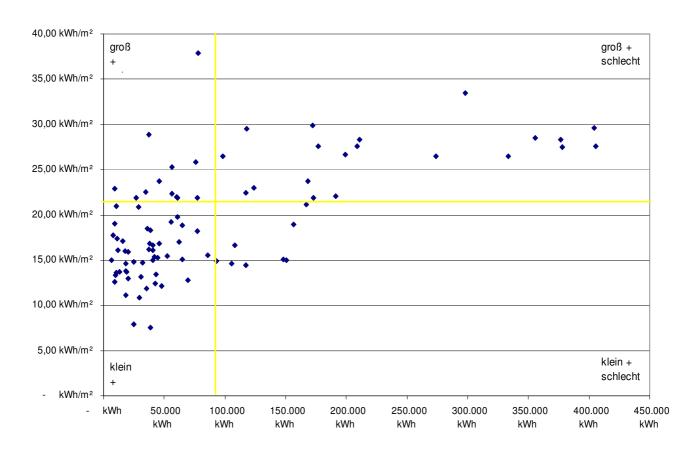
Große Liegenschaften mit großen Flächen können einen hohen Verbrauch (im Diagramm "groß" gekennzeichnet) haben, aber einen sehr geringen Verbrauch pro Quadratmeter. Diese Liegenschaften können nur unverhältnismäßig teuer saniert werden. Je kleiner ein Verbrauch pro Quadratmeter ist, desto teurer wird eine Sanierung um noch mehr Energie einzusparen. Irgendwann wird solch eine Sanierung unwirtschaftlich.

"Kleine / schlechte" fallen auch weniger ins Gewicht, da die Liegenschaften zwar einen überdurchschnittlichen hohen Verbrauch pro Quadratmeter haben, aber der Gesamtverbrauch so gering ausfällt, dass eine Sanierung auf die Gesamtverbrauchszahlen sehr viel weniger ins Gewicht fällt.

Deshalb soll das Hauptaugenmerk auf den 4. Quadranten "groß + schlecht" gelegt werden. "Große / schlechte" Liegenschaften haben einen hohen Gesamtverbrauch und einen überdurchschnittlich hohen Verbrauch pro Quadratmeter. Sie weisen das höchste Einsparpotential an Energie auf.

Potentialanalyse Wärme

Nachfolgend dargestellt Liegenschaften mit hohem Wärmeverbrauch:


lfd.Nr.	Schulname	Fläche 2013	Verbrauch (Wärme 2013)	kWh / m²	
1	Schule am Niedertor, Wening	400,00 m ²	108.260,00 kWh	270,65 kWh/m ²	
2	Kurt-Moosdorf-Schule, Echzell	3.997,00 m ²	852.100,00 kWh	213,18 kWh/m²	
3	Johanniter Schule, Gambach	3.640,00 m ²	721.970,80 kWh	198,34 kWh/m²	
4	Oberer Hüttenberg, Kirch-Göns	4.298,00 m ²	802.833,00 kWh	186,79 kWh/m²	*
5	Ernst-Reuter-Schule, Bad Vilbel	3.390,00 m ²	550.242,00 kWh	162,31 kWh/m²	
6	Berufliche Schule, Nidda	7.458,00 m ²	1.120.695,30 kWh	150,27 kWh/m²	
7	Erich Kästner-Schule, Rodheim	4.230,00 m ²	613.010,00 kWh	144,92 kWh/m²	*
8	Johann-Philipp-Reis-Schule, Friedberg	12.573,00 m ²	1.671.495,02 kWh	132,94 kWh/m²	*
9	Helmut-von-Bracken-Schule, Friedberg	3.705,00 m ²	492.554,61 kWh	132,94 kWh/m²	
10	Haupt- und Realschule, Nidda	7.918,00 m ²	993.125,36 kWh	125,43 kWh/m²	

^{*} Große Sanierungstätigkeiten in 2013 / 2014

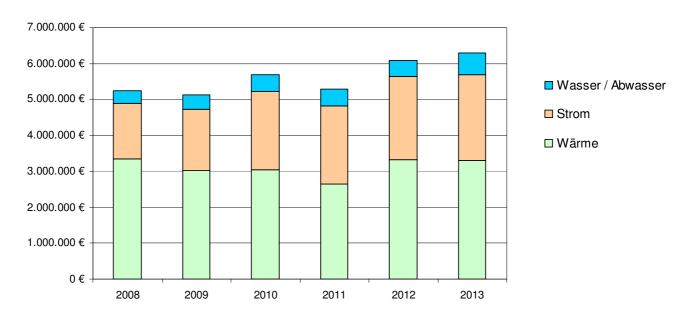
Verweis:
- Seite 44: Darstellung von zwei positiven Beispielen, in denen durch energetische Sanierung Energie eingespart wurde
- Anhang: weitere Bsp. von Liegenschaften, gelb markiert, in denen, durch energetische Maßnahmen, Energie einge- spart wurde

Klimaschutzbericht für das Jahr 2013

Potentialanalyse Strom

Nachfolgend dargestellt Liegenschaften mit hohem Stromverbrauch:

lfd.Nr.	Schulname	Fläche 2013	Verbrauch (Wärme 2013)	kWh / m²
1	Gymnasium, Nidda	8.895,00 m ²	297.782,00 kWh	33,48 kWh/m²
2	Schrenzerschule, Butzbach	5.756,00 m ²	172.169,00 kWh	29,91 kWh/m²
3	Henry-Benrath-Schule, Friedberg	13.670,00 m ²	404.203,00 kWh	29,57 kWh/m²
4	Kurt-Moosdorf-Schule, Echzell	3.997,00 m ²	117.984,00 kWh	29,52 kWh/m²
5	Gesamtschule Konradsdorf, Ortenberg	12.487,00 m ²	355.765,54 kWh	28,49 kWh/m²
6	Wolfgang-Ernst-Gymnasium, Büdingen	13.291,00 m ²	376.813,44 kWh	28,35 kWh/m²
7	Schule am Dohlberg, Büdingen	7.437,00 m ²	210.846,56 kWh	28,35 kWh/m²
8	Ernst-Ludwig-Schule, Bad Nauheim	6.421,00 m ²	176.841,85 kWh	27,54 kWh/m²
9	Stadtschule am Solgraben, Bad Nauheim	7.578,00 m ²	208.706,99 kWh	27,54 kWh/m²
10	Berufliche Schulen am Gradierwerk,Bad Nauheim	14.711,00 m ²	405.158,16 kWh	27,54 kWh/m²


Kostenentwicklung

2.4 Kostenentwicklung: Strom, Wärme und Wasser

Während die Kosten im Jahr 2008 für Strom, Wärme und Wasser runde 5,3 Mio. Euro betrugen, haben sich diese trotz gesunkener Verbräuche, insbesondere durch die gestiegenen Energiepreise, auf 6,3 Mio. Euro erhöht. Dies entspricht einer Kostensteigerung von 16 % innerhalb von sechs Jahren.

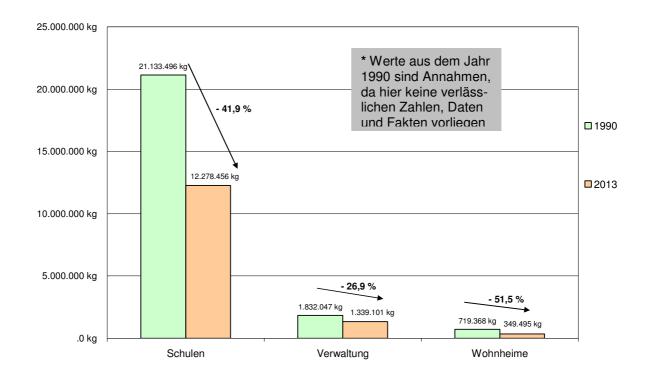
Ohne die u. a. im Klimaschutz-Teilkonzept beschriebenen / angestoßenen Maßnahmen wären diese wesentlich höher ausgefallen. Im Wärmebereich sind das ca. 34 % der Kosten, die seit dem Jahr 1990 eingespart werden konnte, also runde 1.100.000,-€.

Entwicklung der Kosten für Strom, Wärme, Wasser

CO₂ – Emissionen

2.5 CO₂ – Emissionen kreiseigener Liegenschaften

In Vergleich zum Jahr 1990 gingen die CO₂ – Emissionen um 42 % gegenüber dem Jahr 2013 zurück.


Insgesamt lagen die Emissionen für Wärme und Strom im Jahr 2013 bei 13,9 Mio. kg CO₂.

Betrachtet man die verschiedenen Liegenschaftsarten getrennt, erkennt man bei den Schulen einen Rückgang von ca. 42 %, bei den Verwaltungsgebäuden 27 % und bei den Wohnheimen von 51 %.

Anmerkung:

In dieser Betrachtung sind die CO₂ – Emissionen von Strom und Wärme gesamt betrachtet. Hier fließen nicht wie in den folgenden Kapiteln die Kompensation durch Photovoltaikstrom ein

CO₂-Bilanz (1990 / 2013)

<u>Betrachtung CO₂ – Emissionen</u> <u>Schule</u>

Von 2012 auf 2013 konnte sowohl bei Wärme als auch bei Strom einen insgesamt leichter Rückgang von einem Prozent verzeichnet werden.

Die Emissionen von Strom gingen u.a. deshalb zurück, weil im Jahr 2013 zur Bewertung des CO₂ - Berechnungsfaktors mehr regenerative Energien einflossen (2012: 0,566 kg / kWh; 2013: 559 kg / kWh).

Zur Kompensation wird wie in den Vorjahren auch der Photovoltaikstrom herangezogen, so dass bei den Schulen ein Rückgang mit Photovoltaikstrom von fast 45 % zu verzeichnen ist.

Schule

Lfd. Nr.	Jahr	Emissionen 1990	Emissionen 2012	Emissionen 2013	Tendenz zu 1990
1	Wärme	16.586.565 kg	7.841.070 kg	7.767.432 kg	-53,17%
2	Strom	4.546.931 kg	4.576.234 kg	4.511.024 kg	-0,79%
3	Kompensation PV-Strom	- kg	482.531 kg	578.565 kg	100,00%
	Summe	21.133.496 kg	12.899.835 kg	11.699.891 kg	-44,64%

<u>Betrachtung CO₂ – Emissionen</u> <u>Verwaltung</u>

Vom Jahr 2012 auf 2013 konnte sowohl bei Wärme als auch bei Strom ein Rückgang von insgesamt acht Prozent verzeichnet werden.

In Bezug auf 1990 konnte ein Verringerung von 28,32 % erreicht werden.

Im Vergleich zu den Schulen wurde bei den Verwaltungsgebäuden eine geringere Einsparung festgestellt, da sich z.B. die Anzahl und die tägliche Nutzungsdauer der Arbeitsplätze seit Jahren kaum verändert hat. Da der Stromverbrauch proportional größer zum Wärmeverbrauch ist als bei den Schulen und durch die fortschreitende Technisierung in der Verwaltung, konnte hier weniger CO₂ eingespart werden.

Die Emissionen von Strom gingen wie bei den Schulen leicht zurück, weil im Jahr 2013 zur Bewertung des CO₂ - Berechnungsfaktors mehr regenerative Energien einflossen (2012 0,566 kg / kWh; 2013: 559 kg / kWh).

Verwaltung

Lfd. Nr.	Jahr	Emissionen 1990	Emissionen 2012	Emissionen 2013	Tendenz zu 1990
1	Wärme	1.005.280 kg	634.894 kg	559.002 kg	-44,39%
2	Strom	826.767 kg	825.938 kg	780.098 kg	-5,64%
3	Kompensation PV-Strom	- kg	25.810 kg	25.810 kg	100,00%
	Summe	1.832.047 kg	1.486.642 kg	1.313.291 kg	-28,32%

<u>Betrachtung CO₂ – Emissionen</u> Wohnheime

Vom Jahr 2012 auf 2013 stiegen die CO_2 – Emissionen um 5,7 % an.

Durch die Zunahme der Anzahl von Flüchtlingen im Kreisgebiet erhöhten sich die CO₂-Emissionen aufgrund einer verstärkten Nutzung der Räumlichkeiten und der damit verbundene erhöhte Stromverbrauch.

Wohnheime

Lfd. Nr.	Jahr	Emissionen 1990	Emissionen 2012	Emissionen 2013	Tendenz zu 1990
1	Wärme	604.662 kg	248.342 kg	202.887 kg	-66,45%
2	Strom	114.706 kg	82.278 kg	146.608 kg	27,81%
3	Kompensation PV-Strom	- kg	- kg	- kg	0,00%
	Summe	719.368 kg	330.620 kg	349.495 kg	-51,42%

Klimaschutzmaßnahmen

3 Klimaschutzmaßnahmen des Wetteraukreises

Mit der Verabschiedung des Klimaschutz – Teilkonzepts Anfang 2013 setzte sich der Wetteraukreis ambitionierte Ziele in der Energieeinsparung sowie in der Minderung der CO₂-Ausstoßes.

Um der Vorbildfunktion des Kreises und den Klimaschutzzielen gerecht zu werden, werden Energieeffizienzmaßnahmen im Gebäudebestand und Maßnahmen im Nutzerverhalten erarbeitet und weiterentwickelt, so dass diese dann sukzessiv umgesetzt werden können. Aktuelle Klimaschutzmaßnahmen sind im weiteren Verlauf dokumentiert.

3.1 Klimaschutzmanagerin

Mit dem Beschluss des Klimaschutz-Teilkonzepts erhielt der Wetteraukreis die Möglichkeit durch das Bundesumweltministerium eine Förderung für eine/n Klimaschutzmanager/in zu beantragen. Der Zuwendungsbescheid vom zuständigen Projektträger Jülich erfolgte am 10.12.2013 und beinhaltet die Förderung einer Vollzeitstelle befristet auf zunächst 2 Jahre.

Seit dem 1. Mai 2014 ist Stefanie Voß als Klimaschutzmanagerin im Wetteraukreis beschäftigt und verfolgt, gemeinsam mit dem Klimaschutzbeauftragten Jens Dölling, die Umsetzung des Konzepts. Schwerpunkt ihrer Tätigkeit ist die Erarbeitung von Nutzungskonzepten für Schulen, Verwaltungsgebäude und Wohnheime sowie die Durchführung und Koordination von einzelnen Klimaschutzmaßnahmen.

3.2 Nutzerkonzept: Klimaexperten im Wetteraukreis

Zu den kreiseigenen Liegenschaften des Wetteraukreises zählen aktuell 88 Schulen. Neben einer Vielzahl von Energieeffizienzmaßnahmen in und an den Gebäuden, stellt das Nutzerverhalten einen wesentlichen Handlungsschwerpunkt dar.

Im Rahmen der hessischen Nachhaltigkeitsstrategie entwickelte der Wetteraukreis gemeinsam mit der Beratungsstelle für ökologische Bildung (BöB) das Projekt "Klimaexperten im Wetteraukreis". Im Fokus steht die Sensibilisierung zu einem sparsamen und sinnvollen Umgang mit den zur Verfügung stehenden Ressourcen sowie die Unterstützung der Lehrkräfte bei der Integration der Themenfelder Klima und Energie in die Lehrpläne.

Zwei wichtige Bausteine des Projektes sind:

- Durchführung von Unterrichtseinheiten zu Themen wie Klima und Energie durch geschultes Personal: Die Kinder werden spielerisch und mittels kleinerer Experimente an die Themen heran geführt und dafür sensibilisiert.
- Energiecheck des Schulgebäudes (Rundgang durch das Schulgebäude): Untersuchung des Schulgebäudes auf Schwachstellen im Nutzerverhalten und auf mögliche Energieeinsparpotenziale

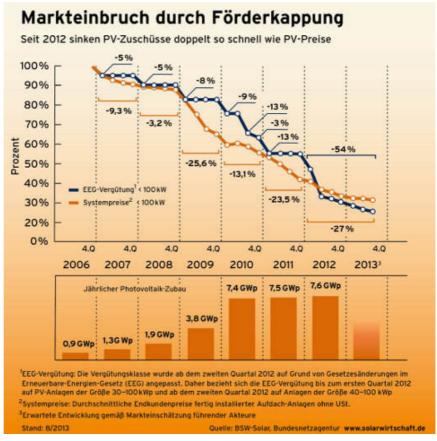
Durch ein Anreizsystem, die Schulen finanziell an den Energieeinsparungen zu beteiligen, sollen die Schulen im Wetteraukreis zu einem verantwortungsvollen und klimafreundlichen Verhalten motiviert werden. Das Projekt "Budgetierung Betriebskosten" startete im Jahr 2012 und wird im Rahmen des Nutzerkonzepts und des Projekts Klimaexperten als "Budgetierung Energiekosten" weitergeführt.

Die federführende Koordination des Projektes liegt in der Verantwortung des Wetteraukreises und der Beratungsstelle für ökologische Bildung. Zudem ist die Zusammenarbeit mit dem Staatlichen Schulamt für den Hochtaunuskreis und den Wetteraukreis, der Berufs- und Technikerschule Butzbach sowie der Stadt Karben und ggf. weiteren Gemeinden ein zielführender Handlungsschritt.

Der Wetteraukreis verfolgt mit diesem Projekt die 2009 beschlossenen Klimaschutzziele, die Vorgaben des beschlossenen Klimaschutzteilkonzept und trägt langfristig zur Energieeinsparung sowie zur CO₂-Minderung bei.

3.3 Photovoltaik-Projekte

2014 wurden wie in den vergangenen Jahren sechs Schuldächer (insgesamt 39 Dächer mit 1.124 kWp) zur Vermietung für den Betrieb von Photovoltaik-Anlagen ausgeschrieben. Von den sechs Firmen mit Interessenbekundung gaben drei Unternehmen wirtschaftliche Angebote ab: OVAG AG, Sonneninitiative e.V. und Deutsche Solarkraftwerke - Verwaltungs GmbH (dsk).


Die Installation und Inbetriebnahme von Photovoltaik – Anlagen ist 2014 an folgenden Schulen geplant:

- Limesschule, Altenstadt
- Schrenzerschule, Butzbach
- Geschwister-Scholl-Schule, Niddatal

- Degerfeldschule; Butzbach
- Rosendorfschule, Bad Nauheim
- Fritz-Erler-Schule, Wöllstadt

Durch den Betrieb der Photovoltaik – Anlagen und die Stromeinspeisung kann der Wetteraukreis zukünftig kostengünstig Strom beziehen (13,5 Cent bzw. 18 Cent statt 22 Cent netto / kWh).

Trotz der Vermietung dieser Dachflächen, kann davon ausgegangen werden, dass die Wirtschaftlichkeit zukünftig nur bedingt gegeben ist. Gründe dafür sind maßgeblich veränderte Rahmenbedingungen im EEG.

3.4 Beleuchtungskonzepte

Der Gesamtstromverbrauch der kreiseigenen Liegenschaften lag 2013 bei rund 10 Mio. kWh. Wie im Klimaschutz – Teilkonzept erwähnt, entfallen davon ca. 50 % auf die Beleuchtungsenergie. Mit modernen LED-Leuchten und innovativen Beleuchtungssystemen können bis zu 60 % dieser Energie eingespart werden.

Der Einbau hocheffizienter Beleuchtungstechnik wird derzeitig mit 30 % (2013: 40%) vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit gefördert.

Für zwei kreiseigene Liegenschaften wurde die Förderung bereits bewilligt, so dass der Austausch der Leuchten im Herbst 2014 stattfinden wird. Weitere fünf Förderanträge für LED-Projekte beantragte der Kreis im Jahr 2014.

Diese konnten jedoch vom Projektträger Jülich aufgrund der Vielzahl an eingehenden Anträgen, noch nicht bearbeitet werden.

In den Verwaltungsgebäuden am Europaplatz in Friedberg wurde eine Bestandsaufnahme im Bereich der Beleuchtung durchgeführt. Diese bildet die Grundlage für ein weiteres LED – Projekt. Im Anschluss an die Prüfung der Wirtschaftlichkeit soll die Beantragung der Förderung im Frühjahr 2015 erfolgen. Gleiches ist für das Verwaltungsgebäude in der Homburger Str. in Friedberg geplant.

Übersicht: LED - Projekte

lfd. Nr.	Maßnahme	Standort	jährl. Stromeinsparung	CO ₂ - Einsparung	Bemerkung
1	Sanierung Sporthallenbeleuchtung	Limesschule, Altenstadt	21.000 kWh	248,00 t	bewilligt, Auftrag erteilt, Ausführung September 2014
2	Sanierung der Hallenbeleuchtung	Berufliche Schule am Gradierwerk, Bad Nauheim	77.200 kWh	911,00 t	bewilligt, Auftrag erteilt, Ausführung Oktober 2014
3	Sanierung der Innenbeleuchtung	Weidiggymnasium, Butzbach	9.539 kWh	113,00 t	noch nicht bewilligt
4	Sanierung der Innenbeleuchtung	Gesamtschule Konradsdorf	10.521 kWh	124,00 t	noch nicht bewilligt
5	Sanierung der Innenbeleuchtung	Henry-Benrath- Schule, Friedberg	43.466 kWh	513,00 t	noch nicht bewilligt
6	Sanierung der Innenbeleuchtung	Burggymnasium, Friedberg	8.065 kWh	95,00 t	noch nicht bewilligt
7	Sanierung der Hallenbeleuchtung	Kurt Schumacher Schule, Karben	73.548 kWh	868,00 t	noch nicht bewilligt

3.5 Austausch der Heizungsanlage

Im Zusammenhang mit der fachlich – inhaltlichen Unterstützung bei der Umsetzung des Klimaschutz – Teilkonzepts durch die Förderung einer Stelle im Klimaschutzmanagement, erhält der Wetteraukreis die Möglichkeit einen einmaligen Zuschuss für eine ausgewählte Klimaschutzmaßnahme zu beantragen. Die Umsetzung der Maßnahme unterliegt folgenden Förderungsbedingungen:

- Bewilligung der Förderung einer Klimaschutzmanagerstelle
- Bestandteil des Klimaschutz Teilkonzept
- Maßnahme mit investivem Charakter
- CO₂ Minderungspotenzial von mindestens 80 %

Für eine Erneuerung der Heizungsanlage kommen aktuell drei Standorte in Frage, welche in nachstehender Übersicht zusammengefasst sind.

Die Umsetzung der Maßnahme und die Nutzung nachwachsender Rohstoffe entspricht den vorgegebenen Förderbedingungen, so dass im September 2014 die Wirtschaftlichkeitsprüfung für alle drei Standorte in Auftrag gegeben wurde. Nach Abschluss der Untersuchung erfolgt die Realisierung des Vorhabens in maximal zwei der genannten Liegenschaften. Die Beantragung der Fördermittel ist für Anfang 2015 geplant.

Mit dem Austausch der Heizungsanlage und der Umstellung auf erneuerbare Energien schafft der Wetteraukreis eine klimafreundliche Wärmeversorgung der kreiseigenen Liegenschaft und gewährleistet eine neutrale CO₂-Bilanz.

Mit der Umsetzung der Maßnahme verfolgt der Wetteraukreis die Zielvorgabe der Energieeinsparung und der CO₂-Minderung.

Übersicht: mögliche Standorte - Austausch Heizungsanlage

lfd. Nr.	Standort	Energieträger	Wärmeverbrauch 2013	CO ₂ - Emission 2013
1	Limesschule Altenstadt	Öl	1.081.180 kWh	326.516,36 kg
2	Janus-Korczak-Schule Altenstadt	Öl	310.320 kWh	93.716,64 kg
3	Verwaltungsgebäude, Homburger Str. 17	Gas	289.956 kWh	70.749,26 kg

3.6 Projekt Biogasanlagen

Wie bereits berichtet, wird die MPS Oberer Hüttenberg z. T. mit Wärme aus einer Biogasanlage eines ortansässigen Landwirtes versorgt. Hier wird die Abwärme aus dem Blockheizkraftwerk der Biogasanlage, das Strom aus dem Biogas erzeugt, über eine Fernwärmeleitung an die Schule in Pohl - Göns geliefert.

In Ober-Seemen wird zur Zeit ein Nahwärmenetz (Wärme aus einer Biogasanlage), an das mehrere Haushalte und auch die Seementalschule angeschlossen werden, aufgebaut.

Mit beiden Projekten können Einsparungen von runden 180.000 kg CO₂ erreicht werden.

Folgende CO₂ Einsparungen können durch die beiden Anschlüsse realisiert werden:

Übersicht Einsparungen

Lfd. Nr.	Objekt	Gesamt- verbrauch	Wärmevebrauch aus Biogasanlage	CO2 - Einsparungen	Einsparungen
1	MPS Oberer Hüttenberg, Butzbach	785.350 kWh	628.000 kWh	153.232 kg	real
2	Seementalschule, Ober Seemen	126.300 kWh	90.000 kWh	27.180 kg	geschätzt

3.7 Elektromobilität

Der Wetteraukreis hat sich den Einsatz verbrauchseffizienter und klimafreundlicher Dienstwagen zum Ziel gemacht. Mit der Installation und Inbetriebnahme der Photovoltaikanlage auf dem Kreishaus in Friedberg im Jahr 2012 wurde der Grundstein zur Nutzung von Elektrofahrzeugen, gespeist mit Sonnenenergie, gelegt.

2013 bewarb sich der Kreis deshalb auf eine Förderung im Rahmen des Landesprojekts " Elektromobilität in hessischen Kommunen". Das Land Hessen fördert 50% der Mehrkosten für Elektromobilität. Mit dem Zuwendungsbescheid vom 02.10.2013 wurde das Antragsverfahren abgeschlossen, so dass der Wetteraukreis für die Projektlaufzeit 2014 – 2015 eine Förderung erhält. Seit Februar 2014 nutzen Mitarbeiter der Kreisverwaltung erstmalig ein elektrisch betriebenes Fahrzeug für Dienstfahrten innerhalb des Wetteraukreises.

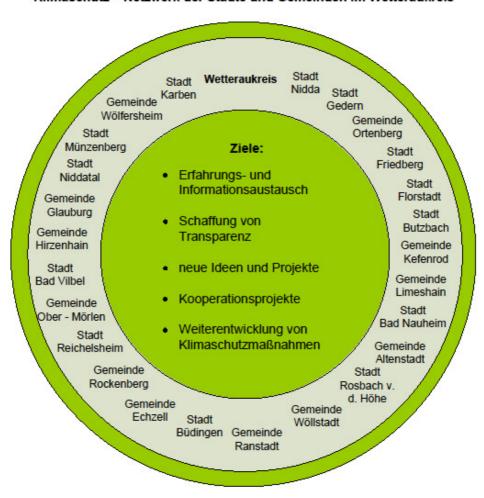
Die Planung und Vorbereitung für ein weiteres Projekt im Bereich der Elektromobilität startete gemeinsam mit dem Institut für Stadtmarketing aus Bingen im Sommer 2013.

Das Institut stellt einen elektrisch betriebenen Smart sowie ein elektronisches Informationsterminal für Präsentationszwecke zur Verfügung. Beide Komponenten werden durch regionale Sponsoring – Partner finanziert: Regionale Unternehmen, welche sich weitgehend mit dem Thema Klimaschutz identifizieren, erhalten die Möglichkeit sich auf dem Informa-

tionsterminal zu präsentieren. Aktuell wurden 46 Sponsoren vom Institut für Stadtmarketing für das Projekt akquiriert.

Der Wetteraukreis erhielt am 16.07.2014 ein werbefreies, mit dem eigenen Logo gestaltetes Elektromobil und ein modernes Informationsportal.

Die feierliche Übergabe des Fahrzeugs und des Terminals erfolgte gemeinsam mit den Sponsoren am 12.09.2014. Nach einer Testphase wird das Fahrzeug dem Fachbereich 4 für Dienstfahrten zur Verfügung gestellt.



3.8 Klimaschutz - Netzwerk

Der Wetteraukreis erarbeitet derzeitig gemeinsam mit der Stadt Karben ein Konzept zur Vernetzung aller im Klimaschutz aktiven Städte und Gemeinden im Kreis. Ziel des Netzwerks ist der gemeinsame Erfahrungs- und Informationsaustausch zu aktuellen und umgesetzten Klimaschutzmaßnahmen sowie die Schaffung von Transparenz von Klimaschutzaktivitäten.

Zum ersten gemeinsamen Treffen wird der Wetteraukreis am 26. November 2014 einladen. Die Mehrheit der bereits angesprochenen Städte und Gemeinden zeigt großes Interesse am Aufbau eines Klimaschutz – Netzwerkes.

Klimaschutz - Netzwerk der Städte und Gemeinden im Wetteraukreis

3.9 Internetseite zum Thema Klimaschutz

Seit Mitte des Jahres kann man sich auf der Internetseite

http://klimaschutz.wetterau.de

über die Klimaschutzaktivitäten informieren. Aktuelle Presseinformationen über den Klimaschutz, Tätigkeiten in der Verwaltung und in Schulen sind genauso Inhalt wie Tätigkeiten von Kommunen bzgl. Klimaschutz.

Über die Internseite werden auch dieser und alle zukünftigen Klimaschutzberichte abrufbar sein.

Die Portalseite zum Klimaschutz wird in den nächsten Jahren weiter ausgebaut, so dass künftig immer mehr Informationen auch für den privaten Nutzer zur Verfügung gestellt werden können.

3.10 Optimierung des Energiemanagements

Der Wetteraukreis hat in seinen Klimaschutzzielen eine 30 % - ige Reduzierung der Energiekosten bis zum Jahr 2020 in Bezug auf das Basisjahr 1990 vorgegeben. Um diese Ziele zu erreichen wurde vom Kreistag ein Klimaschutzteilkonzept beschlossen.

Energiemanagement ist sowohl in Teilen im FD 5.2, Immobilienmanagement (Kennzahlen, Energieeinkauf, Hausmeister vor Ort) als auch im FD 5.4, Hochbau / Bauunterhaltung (Technische Unterstützung, Anlagenoptimierung und -neuplanung) vorhanden. Doch geschieht das Zusammenwirkungen aller Beteiligten oft nur einzelfallbezogen. Eine Gesamtstrategie / Ausrichtung fehlt.

Da im Wetteraukreis kein strategisches Energiemanagement, dass alle relevanten Bereiche einschließt, existiert, schreibt das beschlossene Klimaschutzteilkonzept die Einführung eines solchen vor.

In diesem Projekt sollen vorhandene Elemente zusammengeführt werden, Prozesse optimiert und neue noch nicht vorhandene Elemente eingeführt werden.

Mit der Optimierung des Energiemanagements soll die angestoßene "Systematische Aufgabenkritik" des Landrates in Bezug auf Energie unterstützt, weitere Einsparpotentiale erschlossen und Handlungsstrategien entwickelt werden.

Projektgesamtziel:

- Optimierung des Energiemanagements.
- Reduzierung von Verbräuchen und Kosten bzw. Vermeidung von Mehrkosten (Teuerungsraten durch Preissteigerungen sowie Steuern- und Abgabenerhöhungen)
- Erschließung von weitere Einsparpotentialen

3.11 Energetische Sanierung - Wärmedämmmaßnahmen

In den vergangenen Jahren sind die Energiekosten für die kreiseigenen Liegenschaften gestiegen.

Auch wenn exakte Vorhersagen über die Entwicklung von Energiepreisen kaum möglich sind, kann doch davon ausgegangen werden, dass es zu einem weiteren Anstieg der Preise für fossile Energieträger kommen wird.

Mit der Verbesserung des wärmetechnischen Zustands der kreiseigenen Liegenschaften ist der Wetteraukreis bemüht der Kostenentwicklung entgegen zu wirken. Bei der Überprüfung der Wirtschaftlichkeit energetischer Sanierungsmaßnahmen sind gekoppelte Maßnahmen ökonomisch am sinnvollsten. Maßnahmen zur Energieeinsparung sind dann wirtschaftlich, wenn ohnehin größere Maßnahmen zur Instandhaltung bzw. Instandsetzung erforderlich sind.

2013 wurde diese Vorgehensweise im Rahmen des Gesamtsanierungskonzepts in zwei Liegenschaften des Kreises angewendet. Die Sanierungsmaßnahmen erfolgten nach der Energieeinsparverordnung (EnEV) 2009.

Gesamtschule Konradsdorf

Sanierung der Fassade & Austausch der Fenster:

Beginn der Sanierung:

- 1. BA 2010–2012 (sip-Programm)
- 2. BA 2012
- 3. BA 2014

Einsparung seit 2010:

ca. 30 %

(Verbrauch witterungsbereinigt 2010: ca. 1,4 Mio. kWh / 2013: ca. 1,0 Mio. kWh)

Weidigschule Butzbach:

Sanierung der Fassade:

Beginn der Sanierung:

1. BA 2009: (Ebene 400 und 500)

Fortführung der Sanierung:

2. BA 2013 (Ebene 100 und 300)

Abschluss der Sanierung: 2014

Einsparung seit 2009:

ca. 15 %

(Verbrauch witterungsbereinigt 2009: ca. 850.000 kWh / 2013: ca. 730.000 kWh)

Impressum

Herausgeber:

Wetteraukreis Europaplatz 61169 Friedberg

Bearbeitung:

Jens Dölling Stefanie Voß

Redaktion:

Jens Dölling Stefanie Voß Frank Neubauer Thomas Lori

Druck:

Druckerei Wetteraukreis

© Copyright Wetteraukreis, Friedberg

Nachdruck, elektronische Vervielfältigung und gewerbliche Nutzung nur mit Genehmigung des Wetteraukreises, Europaplatz, 61169 Friedberg

Legende

<u>Brennwert:</u> spezifischer Energiegehalt von Brennstoff unter Ausnutzung der in den Rauchgasen enthaltenen Kondensationswärme des Wassers

BHKW: Blockheizkraftwerke

BDEW: Bundesverband der Energie- und Wasserwirtschaft

CO₂: chemische Formel für Kohlendioxid

<u>EEG</u>: Das deutsche Gesetz für den Vorrang Erneuerbarer Energien (Kurztitel Erneuerbare-Energien-Gesetz, EEG) regelt die bevorzugte Einspeisung von Strom aus <u>erneuerbaren Quellen</u> ins Stromnetz und garantiert deren Erzeugern feste Einspeisevergütungen.

Es soll im Interesse des Klima- und Umweltschutzes

- eine nachhaltige Entwicklung der Energieversorgung ermöglichen,
- die volkswirtschaftlichen Kosten der Energieversorgung auch durch die Einbeziehung langfristiger externer Effekte verringern
- fossile Energieressourcen schonen und
- die Weiterentwicklung von Technologien zur Erzeugung von Strom aus Erneuerbaren Energien fördern.

Mit dem EEG erhalten Anlagenbetreiber 15 bis 20 Jahre lang eine festgelegte Einspeisevergütung für ihren erzeugten Strom. Die Vergütungssätze sind nach Technologien und Standorten differenziert und sollen einen wirtschaftlichen Betrieb der Anlagen ermöglichen. Der für neu installierte Anlagen festgelegte Satz sinkt jährlich um einen bestimmten Prozentsatz (Degression). Durch diese stetige Degression wird ein Kostendruck im Sinne einer gewollten Anreizregulierung erzeugt: Anlagen sollen effizienter und kostengünstiger hergestellt werden, um langfristig auch ohne Hilfen am Markt bestehen zu können. Gefördert wird die Erzeugung von Strom aus:

- Wasserkraft
- Deponiegas, Klärgas und Grubengas
- Biomasse
- Geothermie
- Windenergie
- solarer Strahlungsenergie (zum Beispiel <u>Photovoltaik</u>)

ENEV: Energieeinsparverordnung

EVU: Energieversorgungsunternehmen

<u>Emission:</u> Jegliche Art der Abgabe von Stoffen, Energien und Strahlen an die Umgebung durch eine bestimmte Quelle; häufig handelt es sich dabei um die Abgabe von Schadstoffen

Gradtagzahlen: Die Gradtagzahl (GTZ, Gt) und Heizgradtage (HGT, G) sind Maße für den Wärmebedarf eines Gebäudes während der Heizperiode. Sie stellen den Zusammenhang zwischen Raumtemperatur und der Außenlufttemperatur für die Heiztage eines Bemessungszeitraums dar und sind somit ein Hilfsmittel zur Bestimmung der Heizkosten und des Heizstoffbedarfs. Die Gradtagzahl und Heizgradtage werden mit der Einheit Kd/a (Kelvin · Tag / Jahr) angegeben, haben also dieselbe Dimension wie die Temperatur. Sie werden aber auch auf eine Heizperiode oder einen Kalendermonat bezogen und sind dann für die saisonalen Schwankungen aussagekräftig. Es gibt jeweils einen Wert für das langjährige klimatische Mittel und einen Wert für das aktuelle Wetter (meteorologische Messung).

Heizwert: spezifischer Energiegehalt von Brennstoff

Holzhackschnitzel: Brennstoff aus Rest- oder Schwachholz; Produktion durch Hacker; die Abmessungen der Schnitzel sind etwa Zigarettenschachtel groß

Holzpellets: Industriell aufbereiteter, genormter Holzbrennstoff; Pellets der Gruppe HP5 haben einen Durchmesser von 4 bis 10 mm und eine Länge von unter 5 cm

KuE: Klimaschutz- und Energiemanagement

KWp: Spitzenleistung bei einer Sonneneinstrahlung von 1000 Watt pro m²

<u>Photovoltaik:</u> Technik der direkten Gewinnung elektrischen Stroms aus Lichtstrahlung, der Wandler ist die Solarzelle

<u>Regenerativ erneuerbare Energien</u>: zum Beispiel Wind-, Wasser-, Solarenergie, Biomasse, Geothermie; Umwelt - Eigenschaft: Kohlendioxid neutral

<u>Spezifische CO₂ Emission Erdöl:</u> Menge der Emission pro Energieeinheit 0,302 kg CO₂ / kWh

<u>Spezifische CO₂ Emission Erdgas:</u> Menge der Emission pro Energieeinheit 0,244 kg CO₂ / kWh

<u>Spezifische CO₂ Emission Holzhackschnitzel:</u> Menge der Emission pro Energieeinheit 0,035 kg CO₂ / kWh

<u>Spezifische CO₂ Emission Pellets:</u> Menge der Emission pro Energieeinheit 0,041 kg CO₂ / kWh

<u>Spezifische CO_2 Emission Strom – Mix 1990:</u> Menge der Emission pro Energieeinheit $0.743 \text{ kg } CO_2 / \text{kWh}$

<u>Spezifische CO_2 Emission Strom – Mix 2013:</u> Menge der Emission pro Energieeinheit 0,559 kg CO_2 / kWh

<u>Versiegelungsgebühr:</u> Versiegelungsgebühren werden von Kommunen erhoben, die einen Teil der Kanalgebühren herausgenommen haben und an der gesamtkommunalen Fläche orientiert wieder den Grundbesitzern zugeschlagen. Jeder Besitzer muss daher einen Anteil gemäß seiner Fläche bezahlen. Damit sollen größere Grundbesitzer stärker an den Kanalkosten für Abwasser "Niederschlag" beteiligt werden

Verwandte physikalische / technische Einheiten :

Größe	Name	Zeichen
Leistung	Kilowatt	kW
Energie	Kilowattstunde	kWh
Masse	Kilogramm	kg
Spezifische CO ₂ -Emission	Menge der Emission	kg CO ₂ / kWh

WDVS: Wärmedämmverbundsystem

<u>Witterungsbereinigt:</u> Der Heizenergieverbrauch wird von Jahr zu Jahr durch unterschiedliche klimatische Bedingungen beeinflusst. Um den Heizenergieverbrauch unterschiedlicher Jahre oder unterschiedlicher Standorte vergleichen zu können, müssen die Energieverbräuche witterungsbereinigt werden. Hierzu werden die Gradtagszahlen eines Vergleichszeitraums in Relation gesetzt und ein Klimakorrekturfaktor ermittelt.

ANLAGE 1

Verbrauchsübersicht 2013 der Schulen

- gelb markiert: Bsp. von Liegenschaften, in denen, durch energetische Maßnahmen, Energie eingespart wurde
- Verbräuche nicht witterungsbereinigt

lfd. Nr.	Schulname	Art Beheizung	Fläche	Verbrauch Wärme	Vebrauch Strom	Vebrauch Wasser
1	Limesschule, Gesamtschule des Wetteraukreises in Altenstadt	Öl	9.798 m²	1.081.180 kWh	147.796 kWh	1.094 m³
2	Janusz-Korczak-Schule, Grundschule des Wetteraukreises in Altenstadt	Öl	2.929 m²	310.320 kWh	44.843 kWh	406 m ³
3	Karoline-von-Günderrode-Schule, Grundschule des Wetteraukreises in Höchst	Öl	438 m²	67.360 kWh	7.786 kWh	35 m³
4	Grundschule Lindheim, Grundschule des Wetteraukreises in Lindheim	Öl	1.386 m²	124.310 kWh	18.967 kWh	164 m³
5	Wolfgang-Ernst-Gymnasium, Gymnasium des Wetteraukreises in Büdingen	Gas/Wärme	13.291 m²	1.189.957 kWh	376.813 kWh	2.201 m³
6	Berufliche Schule Büdingen, Berufliche Schule des Wetteraukreises in Büdingen	Wärme / Gas	7.190 m²	749.984 kWh	105.326 kWh	754 m³
7	Stadtschule Büdingen, Grundschule des Wetteraukreises in Büdingen	Gas	2.305 m²	282.839 kWh	37.405 kWh	269 m³
8	Schule am Dohlberg, Haupt- und Realschule des Wetteraukreises in Büdingen	Gas	7.437 m²	665.843 kWh	210.847 kWh	1.231 m³
9	Georg-August-Zinn-Schule, Grundschule des Wetteraukreises in Düdelsheim	Gas	2.351 m²	340.830 kWh	30.882 kWh	355 m³
10	Eichbaumschule, Grundschule des Wetteraukreises in Vonhausen	Öl	719 m²	112.920 kWh	11.569 kWh	55 m³
11	Grundschule Wolf, Grundschule des Wetteraukreises in Wolf	Gas	495 m²	66.281 kWh	10.360 kWh	67 m³
12	Weidigschule, Gymnasium des Wetteraukreises in Butzbach	Wärme	10.335 m²	747.000 kWh	273.649 kWh	1.829 m³
13	Stadtschule Butzbach, Grund-, Haupt- und Realschule mit Förderstufe des Wetteraukreises in Butzbach	Wärme / Gas	7.097 m²	627.906 kWh	168.515 kWh	989 m³
14	Schrenzerschule, Integrierte Gesamtschule des Wetteraukreises in Butzbach	Wärme	5.756 m²	421.060 kWh	172.169 kWh	488 m³
15	Degerfeldschule, Grundschule des Wetteraukreises in Butzbach	Wärme	3.091 m²	414.190 kWh	61.158 kWh	324 m³
16	Gabriel-Biel-Schule, Schule für Lernhilfe u. Erziehungshilfe, Sonderpädagogisches Beratungs- und Förderzentrum, Förderschule des Wetteraukreises in Butzbach	Wärme / Gas	1.925 m²	149.157 kWh	45.708 kWh	268 m³
17	Hausbergschule, Grundschule des Wetteraukreises in Hoch-Weisel	Wärme / Öl / Pellets	2.729 m²	300.290 kWh	59.954 kWh	403 m³
18	Haingrabenschule, Grundschule des Wetteraukreises in Nieder-Weisel	Wärme	1.123 m ²	105.555 kWh	17.951 kWh	173 m³
19	Oberer Hüttenberg, Grund-, Haupt- und Realschule mit Förderstufe des Wetteraukreises in Kirch-Göns	Wärme / Gas	4.298 m²	802.833 kWh	64.998 kWh	675 m³
20	Berufliche Schule Butzbach, Berufliche Schule des Wetteraukreises in Butzbach	Gas	5.229 m ²	472.909 kWh	117.518 kWh	211 m³
21	Kurt-Moosdorf-Schule, Grundschule des Wetteraukreises in Echzell	Öl / Pellets	3.997 m²	852.100 kWh	117.984 kWh	722 m³
22	Karl-Weigand-Schule, Grund-, Haupt- und Realschule mit Förderstufe des Wetteraukreises in Florstadt	Öl	5.528 m²	443.950 kWh	85.710 kWh	725 m³
23	Grundschule Stammheim, Grundschule des Wetteraukreises in Stammheim	Öl	417 m²	85.510 kWh	6.257 kWh	58 m³
24	Augustinerschule, Gymnasium des Wetteraukreises in Friedberg	Wärme	8.674 m²	557.720 kWh	191.264 kWh	1.583 m³
25	Burggymnasium, Gymnasiale Oberstufenschule des Wetteraukreises in Friedberg	Gas / Öl	8.283 m²	1.019.616 kWh	156.798 kWh	1.076 m³
26	Henry-Benrath-Schule, Gesamtschule des Wetteraukreises in Friedberg	Wärme	13.670 m²	1.684.098 kWh	404.203 kWh	1.295 m³
27	Adolf-Reichwein-Schule, Integrierte Gesamtschule mit Grundstufe des Wetteraukreises in Friedberg	Gas	6.245 m²	371.642 kWh	92.956 kWh	963 m³
28	Gemeinsame Musterschule, Grundschule des Wetteraukreises in Friedberg	Wärme / Öl	2.193 m²	195.910 kWh	32.267 kWh	262 m³
29	Philipp-Dieffenbach-Schule, Grundschule des Wetteraukreises in Friedberg	Wärme	5.419 m²	667.602 kWh	69.348 kWh	609 m³
30	Helmut-von-Bracken-Schule, Schule für Lernhilfe und Sonderpädagogisches Beratungs-und Förderzentrum, Förderschule des Wetteraukreises in Friedberg	Wärme	3.705 m²	492.555 kWh	98.182 kWh	250 m³
31	Wartbergschule, Schule für Praktisch Bildbare Förderschule des Wetteraukreises in Friedberg mit Abteilung für praktisch bildbare Körperbehinderte	Wärme	2.526 m²	233.272 kWh	56.358 kWh	435 m³

lfd. Nr.	Schulname	Art Beheizung	Fläche	Verbrauch Wärme	Vebrauch Strom	Vebrauch Wasser
32	Brüder-Grimm-Schule, Grundschule mit Sprachheilabteilung des Wetteraukreises in Dorheim	Gas	2.509 m ²	169.323 kWh	40.376 kWh	322 m ³
33	Grundschule Fauerbach, Grundschule des Wetteraukreises in Fauerbach	Pellets	1.344 m²	185.100 kWh	18.570 kWh	360 m³
34	Grundschule Ockstadt, Grundschule des Wetteraukreises in Ockstadt	Gas	1.260 m²	177.971 kWh	18.381 kWh	189 m³
35	Johann-Philipp-Reis-Schule, Berufliche Schule des Wetteraukreises in Friedberg	Wärme	12.573 m²	1.671.495 kWh	333.181 kWh	1.509 m³
36	Erlenbachschule, Grundschule des Wetteraukreises in Gedern	Gas	1.556 m²	129.651 kWh	20.193 kWh	145 m³
37	Seementalschule, Grundschule des Wetteraukreises in Ober-Seemen	Öl	709 m²	126.300 kWh	8.929 kWh	71 m³
38	Schule am Niedertor, Grundschule des Wetteraukreises in Wenings	ÖI	400 m²	108.260 kWh	9.163 kWh	131 m³
39	Gesamtschule Gedern, Gesamtschule des Wetteraukreises in Gedern	Wärme / Gas	10.059 m²	867.953 kWh	150.794 kWh	1.128 m³
40	Keltenberg-Schule, Grundschule des Wetteraukreises in Stockheim	Öl	1.652 m²	190.080 kWh	18.343 kWh	365 m³
41	Hugo-Buderus-Schule, Grundschule des Wetteraukreises in Hirzenhain	Gas / Pelelts	1.273 m²	156.700 kWh	20.213 kWh	118 m³
42	Hammerwaldschule, Schule für Praktisch Bildbare mit einer Abteilung für körperbehinderte Praktisch Bildbare, Förderschule des Wetteraukreises in Hirzenhain	Gas	2.055 m²	216.802 kWh	77.805 kWh	681 m³
43	Kurt-Schumacher-Schule, Gesamtschule mit gymnasialer Oberstufe des Wetteraukreises in Groß-Karben	Wärme	13.747 m²	1.523.630 kWh	378.268 kWh	2.408 m³
44	Selzerbachschule, Grundschule des Wetteraukreises in Klein-Karben	Gas	2.733 m ²	337.488 kWh	42.062 kWh	355 m³
45	Grundschule Kloppenheim, Grundschule des Wetteraukreises in Kloppenheim	Wärme	790 m²	113.400 kWh	10.759 kWh	63 m³
46	Grundschule am Römerbad, Grundschule des Wetteraukreises in Okarben	Gas	2.216 m ²	283.054 kWh	56.007 kWh	452 m³
47	Lilienwald-Schule, Grundschule des Wetteraukreises in Petterweil	ÖI	1.545 m²	287.150 kWh	34.854 kWh	277 m³
48	Pestalozzischule, Grundschule des Wetteraukreises in Groß-Karben	Wärme	1.680 m²	186.200 kWh	24.825 kWh	325 m³
49	Herzbergschule, Grund- und Hauptschule des Wetteraukreises in Kefenrod	ÖI	2.707 m²	355.700 kWh	29.472 kWh	142 m³
50	Grundschule Limeshain, Grundschule des Wetteraukreises in Himbach	Gas	3.104 m²	392.777 kWh	24.582 kWh	447 m³
51	Johanniter Schule, Grundschule des Wetteraukreises in Gambach	ÖI / Gas	3.640 m²	721.971 kWh	61.977 kWh	542 m³
52	Ernst-Ludwig-Schule, Gymnasium des Wetteraukreises in Bad Nauheim	Wärme	6.421 m²	514.830 kWh	176.842 kWh	1.348 m³
53	Stadtschule a. d. Wilhelmskirche, Grundschule des Wetteraukreises in Bad Nauheim	Gas	5.072 m ²	555.546 kWh	38.363 kWh	598 m³
54	Stadtschule am Solgraben, Haupt- und Realschule des Wetteraukreises in Bad Nauheim	Wärme	7.578 m²	607.598 kWh	208.707 kWh	1.591 m³
55	Frauenwaldschule, Grundschule mit Förderstufe des Wetteraukreises in Nieder- Mörlen	Gas	2.738 m²	327.216 kWh	46.140 kWh	316 m³
56	Wettertalschule, Grundschule des Wetteraukreises in Rödgen	Gas	1.288 m²	142.347 kWh	37.131 kWh	181 m³
57	Rosendorfschule, Grundschule des Wetteraukreises in Steinfurth	Wärme	935 m²	108.410 kWh	15.999 kWh	208 m³
58	Berufliche Schulen am Gradierwerk, Berufliche Schule des Wetteraukreises in Bad Nauheim	Wärme	14.711 m²	1.179.516 kWh	405.158 kWh	3.089 m³
59	Gymnasium Nidda, Gymnasium des Wetteraukreises in Nidda	Gas / Wärme	8.895 m²	979.910 kWh	297.782 kWh	1.588 m³
60	Berufliche Schule Nidda, Berufliche Schule des Wetteraukreises in Nidda	Gas	7.458 m²	1.120.695 kWh	199.065 kWh	854 m³
61	Haupt- und Realschule Nidda, Haupt und Realschule des Wetteraukreises in Nidda	Gas	7.918 m²	993.125 kWh	173.048 kWh	1.069 m³
62	Gudrun-Pausewang-Schule, Schule für Lernhilfe und Sonderpädagogisches Beratungs- und Förderzentrum, Förderschule des Wetteraukreises in Nidda	Gas	1.236 m²	155.027 kWh	27.013 kWh	167 m³
63	Hoheberg-Schule, Grundschule des Wetteraukreises in Ober-Lais	Wärme	496 m²	71.040 kWh	9.435 kWh	52 m³

Ifd. Nr.	Schulname	Art Beheizung	Fläche	Verbrauch Wärme	Vebrauch Strom	Vebrauch Wasser
64	Josef-Moufang-Schule, Grundschule des Wetteraukreises in Ober-Schmitten	Gas / Öl	724 m²	101.248 kWh	9.684 kWh	187 m³
65	Grundschule Ober Widdersheim, Grundschule des Wetteraukreises in Ober- Widdersheim	Öl	940 m²	130.530 kWh	12.853 kWh	141 m³
66	Grundschule Ulfa, Grundschule des Wetteraukreises in Ulfa	ÖI	626 m²	96.400 kWh	10.892 kWh	54 m³
67	Otto-Dönges-Schule, Grundschule des Wetteraukreises in Nidda	Wärme	2.790 m²	349.939 kWh	60.975 kWh	377 m³
68	Geschwister-Scholl-Schule, Grund-, Haupt- und Realschule mit Förderstufe des Wetteraukreises in Assenheim	Öl / Pellets	5.399 m²	646.697 kWh	124.126 kWh	1.041 m³
69	Eichendorff-Schule, Grundschule des Wetteraukreises in Ilbenstadt	ÖI	2.247 m²	377.250 kWh	37.888 kWh	295 m³
70	Wintersteinschule, Grundschule des Wetteraukreises in Ober-Mörlen	Gas / Öl	3.426 m²	323.274 kWh	42.509 kWh	315 m³
71	Maria-Sibylla-Merian-Schule, Grundschule des Wetteraukreises in Ortenberg	Öl / Flüssiggas	1.954 m²	205.584 kWh	36.150 kWh	143 m³
72	Gesamtschule Konradsdorf, Gesamtschule mit gymnasialer Oberstufe des Wetteraukreises in Ortenberg	Öl	12.487 m²	1.023.034 kWh	355.766 kWh	1.740 m³
73	Erich Kästner-Schule, Schule für Lernhilfe u. Erziehungshilfe, Sonderpäd. Beratungs- u. Förderzentrum, Förderschule des Wetteraukreises in Ortenberg	Öl	2.933 m²	272.046 kWh	75.873 kWh	395 m³
74	Laisbachschule, Grundschule des Wetteraukreises in Ranstadt	ÖI	2.113 m ²	120.000 kWh	38.734 kWh	229 m³
75	Grundschule im Ried, Grundschule des Wetteraukreises in Reichelsheim	ÖI	2.708 m ²	285.850 kWh	40.604 kWh	293 m³
76	Sandrosenschule, Grundschule des Wetteraukreises in Rockenberg	Gas / Öl	1.370 m²	251.500 kWh	28.659 kWh	160 m³
77	Kapersburgschule, Grundschule des Wetteraukreises	Gas	3.203 m ²	323.418 kWh	43.144 kWh	350 m³
78	Erich Kästner-Schule, Grund-, Haupt- und Realschule des Wetteraukreises in Rodheim	Pellets / Öl	4.230 m²	613.010 kWh	77.034 kWh	404 m³
79	Georg-Büchner-Gymnasium, Gymnasium des Wetteraukreises in Bad Vilbel	Wärme	8.115 m²	878.177 kWh	117.461 kWh	1.230 m³
80	Ernst-Reuter-Schule, Grundschule des Wetteraukreises in Bad Vilbel	Gas	3.390 m²	550.242 kWh	52.320 kWh	745 m³
81	John-FKennedy-Schule, Haupt- und Realschule mit Förderstufe des Wetteraukreises in Bad Vilbel	Gas/Wärme	6.507 m²	632.399 kWh	108.266 kWh	1.140 m³
82	Stadtschule Bad Vilbel, Grundschule des Wetteraukreises in Bad Vilbel	Wärme	3.916 m ²	399.959 kWh	47.556 kWh	505 m³
83	Saalburgschule, Grundschule des Wetteraukreises in Bad Vilbel	Gas	2.426 m²	139.900 kWh	40.365 kWh	425 m³
84	Brunnenschule, Schule für Lernhilfe u. Erziehungshilfe und Sonderpädagogisches Beratungs- und Förderzentrum, Förderschule des Wetteraukreises in Bad Vilbel	Gas	3.434 m²	470.007 kWh	64.620 kWh	555 m³
85	Regenbogenschule, Grundschule des Wetteraukreises in Dortelweil	Gas	3.521 m²	329.107 kWh	77.202 kWh	638 m³
86	Singbergschule, Kooperative Gesamtschule mit gymnasialen Zweig des Wetteraukreises in Wölfersheim	Öl	7.902 m²	843.200 kWh	167.112 kWh	1.334 m³
87	Jim-Knopf-Schule, Grundschule des Wetteraukreises in Södel	Gas	2.881 m²	160.870 kWh	55.377 kWh	262 m³
88	Fritz-Erler-Schule, Grundschule des Wetteraukreises in Nieder-Wöllstadt	Wärme	3.018 m²	395.130 kWh	35.662 kWh	343 m³

ANLAGE 2

Verbrauchsübersicht für die Verwaltung und Wohnheime

(Verbräuche nicht witterungsbereinigt)

lfd. Nr.	Verwaltung / Wohnheim	Art Beheizung	Fläche	Verbrauch Wärme	Vebrauch Strom	Vebrauch Wasser
1	Europaplatz Gebäude A, Friedberg	Wärme	3.427,02 m²	436.370 kWh	298.508,82 kWh	489,77 m³
2	Europaplatz Gebäude B, Friedberg	Wärme	10.490,38 m ²	1.070.490 kWh	913.759,18 kWh	1.499,23 m ³
3	Europaplatz Gebäude C, Friedberg	Gas	828,17 m²	70.718 kWh	14.746,00 kWh	174,00 m³
4	Homburger Str. 17, Friedberg	Gas	2.544,00 m ²	289.956 kWh	44.317,00 kWh	545,00 m ³
5	Berliner Straße 31, Büdingen	Gas	1.876,99 m²	213.950 kWh	70.035,00 kWh	439,00 m³_
6	Gymnasiumstraße 2, Büdingen	Gas	1.272,00 m ²	209.509 kWh	54.159,00 kWh	347,00 m³_
7	GU Friedberg, Wehrbach 11-113	Gas	891,00 m²	200.268,90 kWh	45.113,00 kWh	1.925,00 m ³
8	GU Pfingstweide, Friedberg*	Gas	864,74 m²	95.410 kWh	43.695,31 kWh	2.966,08 m ³
9	GU Bad Nauheim, Thersienstr.3	Öl	665,00 m²	166.000,00 kWh	25.747,00 kWh	1.115,00 m ³
10	GU Altenstadt, Hanauer Str. 23	Öl	827,00 m²	47.950,00 kWh	76.482,00 kWh	5.137,00 m ³
11	GU Reichhelsheim, Langweidstr. 5-7	Öl	698,08 m²	142.810.00 kWh	45.582,00 kWh	2.862,00 m ³
12		Öl	580,00 m ²	108.780,00 kWh	25.649,00 kWh	1.523,00 m ³

^{*} Vebrauch von Wasser und Strom geschätzt